240 research outputs found

    Interaction of lignans with human sex hormone binding globulin (SHBG)

    Get PDF
    Lignans bind to sex hormone-binding globulin (SHBG). The lignan with the highest binding affinity is (±)-3,4-divanillyltetrahydrofuran. In a double Stobbe condensation - without use of protecting groups - a wide variety of lignans with different substitution pattern in the aromatic and aliphatic part of the molecule was synthesized. These lignans were tested in a SHBG-binding assay which allowed to deduce the following relationship between structure and activity: 1) (±)-diastereoisomers are more active than meso compounds 2.) the 4-hydroxy-3-methoxy (guajacyl) substitution pattern in the aromatic part is most effective 3.) the activity increases with the decline in polarity of the aliphatic part of the molecule

    Studies on the clinical significance of nonesterified and total cholesterol in urine

    Get PDF
    Gas-liquid chromatographic determinations of nonesterified and total urinary cholesterol were performed in 137 normals, 264 patients with various internal diseases without evidence of neoplasias or diseases of the kidney or urinary tract, 497 patients with malignancies and 236 patients with diseases of the kidney, urinary tract infections or prostatic adenoma with residual urine. A normal range (mean±2 SD) of 0.2–2.2 mg/24 hours nonesterified cholesterol (NEC) and of 0.3–3.0 mg/24 hours total cholesterol (TC) was calculated. Values of urinary cholesterol excretion were independent of age and sex and did not correlate with cholesterol levels in plasma. Patients with various internal diseases, without evidence of neoplasias nor diseases of the kidney or obstruction of the urinary tract, showed normal urinary cholesterol excretions, as did patients with infections of the urinary tract. However, elevated urinary cholesterol was found in patients with diseases of the kidney or urinary tract obstruction (prostatic adenoma with residual urine), malignant diseases of the urogenital tract and metastasing carcinoma of the breast. In patients with other malignant diseases urinary cholesterol was usually normal. Lesions of the urothelial cell membranes are considered to be the most likely cause of urinary cholesterol hyperexcretion. The clinical value of urinary cholesterol determinations as a possible screening test for urogenital carcinomas in unselected populations is limited by lacking specificity, expensive methodology and low prevalence of the mentioned carcinomas, although elevated urinary cholesterol excretions have been observed in early clinical stages of urogenital cancers

    Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae)

    Get PDF
    BACKGROUND: The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. METHODS: Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. RESULTS: Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. CONCLUSION: The isolated compounds generally had a much lower activity than expected based on the activity of the fractions from which they were isolated. This may be the result of synergism between different compounds in the complex extracts or fractions. The results support the traditional use of E. robustum to treat infections. The crude extract had a good activity and low preparation cost, and may be useful in topical applications to combat microbial infections.The authors are grateful to the University of Pretoria for the Post-doctoral Fellowship awarded to MD Awouafack to work at the Faculty of Veterinary Science, Department of Paraclinical Sciences, Phytomedicine Programme, and the National Research Foundation and Medical Research Council for research funding.http://www.biomedcentral.com/1472-6882/13/289am2014mn201

    Absorption and Metabolism of cis-9,trans-11-CLA and of Its Oxidation Product 9,11-Furan Fatty Acid by Caco-2 Cells

    Get PDF
    Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine

    Antioxidant activity relationship of phenolic compounds in Hypericum perforatum L.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The St John's Wort (<it>Hypericum perforatum</it>; Clusiaceae) has been used in traditional and modern medicine for a long time due to its high content of biologically active phenolics. The purpose of this work was to develop a method for their fractionation and identification, and to determine the most active antioxidant compounds in plant extract.</p> <p>Results</p> <p>An LC-MS method which enables fast qualitative and semiquantitative analysis was developed. The composition determined is in agreement with the previous results, where 6 flavonoids, 4 naphthodianthrones and 4 phloroglucinols have been identified. Significant antioxidant activity was determined for most of the fractions by DPPH assay (the lowest IC<sub>50 </sub>of 0.52 μg/ml), NO scavenging (6.11 μg/ml), superoxide scavenging (1.86 μg/ml), lipid peroxidation (0.0079 μg/ml) and FRAP (the highest reduction capacity of 104 mg Fe equivalents/g) assays.</p> <p>Conclusion</p> <p>LC-MS technique has been successfully applied for a quick separation and identification of the major components of <it>H. perforatum </it>fractions. Majority of the fractions analyzed have expressed a very high antioxidative activity when compared to synthetic antioxidants. The antioxidant activity could be attributed to flavonoids and phenolic acids, while phloroglucinols and naphthodianthrones showed no significant activity. It is demonstrated that it is possible to obtain, by fractionation, <it>H. perforatum </it>preparations with significantly increased phloroglucinols-to-naphthodianthrones ratio (up to 95:5).</p

    Molecular Etiology of Atherogenesis – In Vitro Induction of Lipidosis in Macrophages with a New LDL Model

    Get PDF
    BACKGROUND: Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL. METHODOLOGY/PRINCIPAL FINDINGS: Lipid "core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in "frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles. CONCLUSIONS/SIGNIFICANCE: The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents

    Genes Associated with 2-Methylisoborneol Biosynthesis in Cyanobacteria: Isolation, Characterization, and Expression in Response to Light

    Get PDF
    The volatile microbial metabolite 2-methylisoborneol (2-MIB) is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater

    Transcriptional Analysis of Distant Signaling Induced by Insect Elicitors and Mechanical Wounding in Zea mays

    Get PDF
    When plants are under insect herbivore attack defensive measures are activated not only locally, but also in distant and systemic tissues. While insect elicitors (IE) abundant in the oral secretions of the attacking herbivore are essential in the regulation of induced defenses, little is known about their effects on systemic defense signaling in maize (Zea mays). The goal of this study was therefore to identify genetic markers that can be used to further characterize local and systemic signaling events induced by IE or mechanical wounding (MW). We selected genes for this study based on their putative involvement in signaling (allene oxide synthase), regulation of gene expression (transcription factor MYC7), and in direct defenses (ribosome inactivating protein) and analyzed their expression in different sections of the treated leaf as well as in systemic parts of the same plant. We found the most significant transcript accumulation of the selected genes after treatment with insect elicitors in those parts with increased JA levels. Additionally, treatment with IE did also induce the accumulation of MYC7 transcripts in basal parts of the treated leaf and systemically. MW, in contrast, did induce RIP and AOS only locally, but not MYC7. This local suppression of MYC7 was further studied by adding glutathione (GSH) as an electron donor to MW plants to quench putative α, β-unsaturated carbonyls, which build up to significant levels around the damage site. Indeed, GSH-treated MW plants accumulated MYC7 at the damage site and also produced more volatiles, suggesting a putative redox-regulatory element being involved in the suppression of MYC7. The results presented herein provide evidence for the specific induction of distant signaling events triggered by IE, most likely through electric signaling. Additionally, a putative role for MW-induced α, β-unsaturated carbonyls in the transcriptional regulation of defense genes was discovered
    corecore