1,051 research outputs found

    Low Energy Ion Irradiation Induced Modifications in Co/Pt Bi-Layers

    Get PDF

    Codon Distributions in DNA

    Get PDF
    The codons, sixtyfour in number, are distributed over the coding parts of DNA sequences. The distribution function is the plot of frequency-versus-rank of the codons. These distributions are characterised by parameters that are almost universal, i.e., gene independent. There is but a small part that depends on the gene. We present the theory to calculate the universal (gene-independent) part. The part that is gene-specific, however, has undetermined overlaps and fluctuations.Comment: 31 pages, 5 figure

    Equation of state for the MCFL phase and its implications for compact star models

    Full text link
    Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state (EoS) of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent bag constant to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs. bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.Comment: 11 pp. 11 figure

    Application of Tikhonov Regularized Methods to Image Deblurring Problem

    Full text link
    We consider the monotone inclusion problems in real Hilbert spaces. Proximal splitting algorithms are very popular technique to solve it and generally achieve weak convergence under mild assumptions. Researchers assume strong conditions like strong convexity or strong monotonicity on the considered operators to prove strong convergence of the algorithms. Mann iteration method and normal S-iteration method are popular methods to solve fixed point problems. We propose a new common fixed point algorithm based on normal S-iteration method {using Tikhonov regularization }to find common fixed point of nonexpansive operators and prove strong convergence of the generated sequence to the set of common fixed points without assuming strong convexity and strong monotonicity. Based on the proposed fixed point algorithm, we propose a forward-backward-type algorithm and a Douglas-Rachford algorithm in connection with Tikhonov regularization to find the solution of monotone inclusion problems. Further, we consider the complexly structured monotone inclusion problems which are very popular these days. We also propose a strongly convergent forward-backward-type primal-dual algorithm and a Douglas-Rachford-type primal-dual algorithm to solve the monotone inclusion problems. Finally, we conduct a numerical experiment to solve image deblurring problems

    Shear-free radiating collapse and conformal flatness

    Full text link
    Here we study some general properties of spherical shear-free collapse. Its general solution when imposing conformal flatness is reobtained [1,2] and matched to the outgoing Vaidya spacetime. We propose a simple model satisfying these conditions and study its physical consequences. Special attention deserve, the role played by relaxational processes and the conspicuous link betweeen dissipation and density inhomogeneity.Comment: 13 pages Latex. Some misprints in eqs.(17), (30) and (35) have been correcte

    Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory

    Full text link
    We present experiments on the luminescence of excitons confined in a potential trap at milli-Kelvin bath temperatures under cw-excitation. They reveal several distinct features like a kink in the dependence of the total integrated luminescence intensity on excitation laser power and a bimodal distribution of the spatially resolved luminescence. Furthermore, we discuss the present state of the theoretical description of Bose-Einstein condensation of excitons with respect to signatures of a condensate in the luminescence. The comparison of the experimental data with theoretical results with respect to the spatially resolved as well as the integrated luminescence intensity shows the necessity of taking into account a Bose-Einstein condensed excitonic phase in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure

    Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters

    Full text link
    Zn nanoclusters (NCs) are deposited by Low-energy cluster beam deposition technique. The mechanism of oxidation is studied by analysing their compositional and morphological evolution over a long span of time (three years) due to exposure to ambient atmosphere. It is concluded that the mechanism proceeds in two steps. In the first step, the shell of ZnO forms over Zn NCs rapidly up to certain limiting thickness: with in few days -- depending upon the size -- Zn NCs are converted to Zn-ZnO (core-shell), Zn-void-ZnO, or hollow ZnO type NCs. Bigger than ~15 nm become Zn-ZnO (core-shell) type: among them, NCs above ~25 nm could able to retain their initial geometrical shapes (namely triangular, hexagonal, rectangular and rhombohedral), but ~25 to 15 nm size NCs become irregular or distorted geometrical shapes. NCs between ~15 to 5 nm become Zn-void-ZnO type, and smaller than ~5 nm become ZnO hollow sphere type i.e. ZnO hollow NCs. In the second step, all Zn-void-ZnO and Zn-ZnO (core-shell) structures are converted to hollow ZnO NCs in a slow and gradual process, and the mechanism of conversion proceeds through expansion in size by incorporating ZnO monomers inside the shell. The observed oxidation behaviour of NCs is compared with theory of Cabrera - Mott on low-temperature oxidation of metal.Comment: 9 pages, 8 figure
    corecore