165 research outputs found

    Bilateral vestibulopathy and age:experimental considerations for testing dynamic visual acuity on a treadmill

    Get PDF
    Introduction: Bilateral vestibulopathy (BVP) can affect visual acuity in dynamic conditions, like walking. This can be assessed by testing Dynamic Visual Acuity (DVA) on a treadmill at different walking speeds. Apart from BVP, age itself might influence DVA and the ability to complete the test. The objective of this study was to investigate whether DVA tested while walking, and the drop-out rate (the inability to complete all walking speeds of the test) are significantly influenced by age in BVP-patients and healthy subjects. Methods: Forty-four BVP-patients (20 male, mean age 59 years) and 63 healthy subjects (27 male, mean age 46 years) performed the DVA test on a treadmill at 0 (static condition), 2, 4 and 6 km/h (dynamic conditions). The dynamic visual acuity loss was calculated as the difference between visual acuity in the static condition and visual acuity in each walking condition. The dependency of the drop-out rate and dynamic visual acuity loss on BVP and age was investigated at all walking speeds, as well as the dependency of dynamic visual acuity loss on speed. Results: Age and BVP significantly increased the drop-out rate (p ≤ 0.038). A significantly higher dynamic visual acuity loss was found at all speeds in BVP-patients compared to healthy subjects (p < 0.001). Age showed no effect on dynamic visual acuity loss in both groups. In BVP-patients, increasing walking speeds resulted in higher dynamic visual acuity loss (p ≤ 0.036). Conclusion DVA tested while walking on a treadmill, is one of the few “close to reality” functional outcome measures of vestibular function in the vertical plane. It is able to demonstrate significant loss of DVA in bilateral vestibulopathy patients. However, since bilateral vestibulopathy and age significantly increase the drop-out rate at faster walking speeds, it is recommended to use age-matched controls. Furthermore, it could be considered to use an individual “preferred” walking speed and to limit maximum walking speed in older subjects when testing DVA on a treadmill

    Milliarcsecond Localization of the Repeating FRB 20201124A

    Get PDF
    Very long baseline interferometric (VLBI) localizations of repeating fast radio bursts (FRBs) have demonstrated a diversity of local environments: from nearby star-forming regions to globular clusters. Here we report the VLBI localization of FRB 20201124A using an ad hoc array of dishes that also participate in the European VLBI Network (EVN). In our campaign, we detected 18 bursts from FRB 20201124A at two separate epochs. By combining the visibilities from both epochs, we were able to localize FRB 20201124A with a 1 sigma uncertainty of 2.7 mas. We use the relatively large burst sample to investigate astrometric accuracy and find that for greater than or similar to 20 baselines (greater than or similar to 7 dishes) we can robustly reach milliarcsecond precision even using single-burst data sets. Subarcsecond precision is still possible for single bursts, even when only similar to 6 baselines (four dishes) are available. In such cases, the limited uv coverage for individual bursts results in very high side-lobe levels. Thus, in addition to the peak position from the dirty map, we also explore smoothing the structure in the dirty map by fitting Gaussian functions to the fringe pattern in order to constrain individual burst positions, which we find to be more reliable. Our VLBI work places FRB 20201124A 710 +/- 30 mas (1 sigma uncertainty) from the optical center of the host galaxy, consistent with originating from within the recently discovered extended radio structure associated with star formation in the host galaxy. Future high-resolution optical observations, e.g., with Hubble Space Telescope, can determine the proximity of FRB 20201124A\u27s position to nearby knots of star formation

    Drug Resistance in Eukaryotic Microorganisms

    Get PDF
    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies
    corecore