1,284 research outputs found

    AA_\infty Algebras from Slightly Broken Higher Spin Symmetries

    Full text link
    We define a class of AA_\infty-algebras that are obtained by deformations of higher spin symmetries. While higher spin symmetries of a free CFT form an associative algebra, the slightly broken higher spin symmetries give rise to a minimal AA_\infty-algebra extending the associative one. These AA_\infty-algebras are related to non-commutative deformation quantization much as the unbroken higher spin symmetries result from the conventional deformation quantization. In the case of three dimensions there is an additional parameter that the AA_\infty-structure depends on, which is to be related to the Chern-Simons level. The deformations corresponding to the bosonic and fermionic matter lead to the same AA_\infty-algebra, thus manifesting the three-dimensional bosonization conjecture. In all other cases we consider, the AA_\infty-deformation is determined by a generalized free field in one dimension lower.Comment: 48 pages, some pictures; typos fixed, presentation improve

    Formal Higher-Spin Theories and Kontsevich-Shoikhet-Tsygan Formality

    Full text link
    The formal algebraic structures that govern higher-spin theories within the unfolded approach turn out to be related to an extension of the Kontsevich Formality, namely, the Shoikhet-Tsygan Formality. Effectively, this allows one to construct the Hochschild cocycles of higher-spin algebras that make the interaction vertices. As an application of these results we construct a family of Vasiliev-like equations that generate the Hochschild cocycles with sp(2n)sp(2n) symmetry from the corresponding cycles. A particular case of sp(4)sp(4) may be relevant for the on-shell action of the 4d4d theory. We also give the exact equations that describe propagation of higher-spin fields on a background of their own. The consistency of formal higher-spin theories turns out to have a purely geometric interpretation: there exists a certain symplectic invariant associated to cutting a polytope into simplices, namely, the Alexander-Spanier cocycle.Comment: typos fixed, many comments added, 36 pages + 20 pages of Appendices, 3 figure

    How an accelerator can catalyse your ecosystem

    Get PDF
    Many industries from IT to car manufacturing, robotic and biotechnology, competition is moving from the product level to the ecosystem level. The creation of an ecosystem by a rival and the consequent shift to ecosystem competition can be quite challenging for product-focused incumbent organisations who may find that they have a challenge to establish the reputation and legitimacy of their own new ecosystem. This article discusses the ways and means an incumbent organisation can adopt and mobilise their own ecosystem

    Consistent interactions and involution

    Full text link
    Starting from the concept of involution of field equations, a universal method is proposed for constructing consistent interactions between the fields. The method equally well applies to the Lagrangian and non-Lagrangian equations and it is explicitly covariant. No auxiliary fields are introduced. The equations may have (or have no) gauge symmetry and/or second class constraints in Hamiltonian formalism, providing the theory admits a Hamiltonian description. In every case the method identifies all the consistent interactions.Comment: Minor misprints corrected, to appear in JHE

    Classical and quantum stability of higher-derivative dynamics

    Full text link
    We observe that a wide class of higher-derivative systems admits a bounded integral of motion that ensures the classical stability of dynamics, while the canonical energy is unbounded. We use the concept of a Lagrange anchor to demonstrate that the bounded integral of motion is connected with the time-translation invariance. A procedure is suggested for switching on interactions in free higher-derivative systems without breaking their stability. We also demonstrate the quantization technique that keeps the higher-derivative dynamics stable at quantum level. The general construction is illustrated by the examples of the Pais-Uhlenbeck oscillator, higher-derivative scalar field model, and the Podolsky electrodynamics. For all these models, the positive integrals of motion are explicitly constructed and the interactions are included such that keep the system stable.Comment: 39 pages, minor corrections, references adde
    corecore