43 research outputs found

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    A Combined SAXS/SANS Study for the in Situ Characterization of Ligand Shells on Small Nanoparticles: The Case of ZnO

    No full text
    ZnO nanoparticles (NPs) have great potential for their use in, e.g., thin film solar cells due to their electro-optical properties adjustable on the nanoscale. Therefore, the production of well-defined NPs is of major interest. For a targeted production process, the knowledge of the stabilization layer of the NPs during and after their formation is of particular importance. For the study of the stabilizer layer of ZnO NPs prepared in a wet chemical synthesis from zinc acetate, only ex situ studies have been performed so far. An acetate layer bound to the surface of the dried NPs was found; however, an in situ study which addresses the stabilizing layer surrounding the NPs in a native dispersion was missing. By the combination of small angle scattering with neutrons and X-rays (SANS and SAXS) for the same sample, we are now able to observe the acetate shell in situ for the first time. In addition, the changes of this shell could be followed during the ripening process for different temperatures. With increasing size of the ZnO core (dcore) the surrounding shell (dshell) becomes larger, and the acetate concentration within the shell is reduced. For all samples, the shell thickness was found to be larger than the maximum extension of an acetate molecule with acetate concentrations within the shell below 50 vol %. Thus, there is not a monolayer of acetate molecules that covers the NPs but rather a swollen shell of acetate ions. This shell is assumed to hinder the growth of the NPs to larger macrostructures. In addition, we found that the partition coefficient μ between acetate in the shell surrounding the NPs and the total amount of acetate in the solution is about 10% which is in good agreement with ex situ data determined by thermogravimetric analysis

    Choosing the right nanoparticle size - designing novel ZnO electrode architectures for efficient dye-sensitized solar cells

    No full text
    A novel concept for constructing optimized ZnO-based photoanodes as integrative components of dye-sensitized solar cells (DSSCs) is realized by deploying differently sized nanoparticles, ranging from 2 to 10 nm, together with commercially available 20 nm nanoparticles. The 2 nm nanoparticles were used to construct an efficient buffer layer for transparent electrodes based on 10 nm nanoparticles, resulting in a relative increase of device efficiency from 1.8 to 3.0% for devices without and with a buffer layer, respectively. A mixture of 10 and 20 nm nanoparticles was optimized to maximize the diffuse reflection and to minimize the charge transport resistance in a light-scattering layer. This optimization resulted in a homogenous layer of more than 15 μm that provided a device efficiency of 3.3%. The buffer layer, transparent electrode, and light-scattering electrode, were then combined to give an overall efficiency of around 5%. Thus, this work demonstrates that varying the electrode architecture with nanoparticles of different diameters is a powerful strategy for improving the overall efficiency of ZnO-based DSSCs
    corecore