34,733 research outputs found

    NMR Investigation of the Low Temperature Dynamics of solid 4He doped with 3He impurities

    Full text link
    The lattice dynamics of solid 4He has been explored using pulsed NMR methods to study the motion of 3He impurities in the temperature range where experiments have revealed anomalies attributed to superflow or unexpected viscoelastic properties of the solid 4He lattice. We report the results of measurements of the nuclear spin-lattice and spin-spin relaxation times that measure the fluctuation spectrum at high and low frequencies, respectively, of the 3He motion that results from quantum tunneling in the 4He matrix. The measurements were made for 3He concentrations 16<x_3<2000 ppm. For 3He concentrations x_3 = 16 ppm and 24 ppm, large changes are observed for both the spin-lattice relaxation time T_1 and the spin-spin relaxation time T_2 at temperatures close to those for which the anomalies are observed in measurements of torsional oscillator responses and the shear modulus. These changes in the NMR relaxation rates were not observed for higher 3He concentrations.Comment: 23 pages, 10 figure

    Radiance and Doppler shift distributions across the network of the quiet Sun

    Full text link
    The radiance and Doppler-shift distributions across the solar network provide observational constraints of two-dimensional modeling of transition-region emission and flows in coronal funnels. Two different methods, dispersion plots and average-profile studies, were applied to investigate these distributions. In the dispersion plots, we divided the entire scanned region into a bright and a dark part according to an image of Fe xii; we plotted intensities and Doppler shifts in each bin as determined according to a filtered intensity of Si ii. We also studied the difference in height variations of the magnetic field as extrapolated from the MDI magnetogram, in and outside network. For the average-profile study, we selected 74 individual cases and derived the average profiles of intensities and Doppler shifts across the network. The dispersion plots reveal that the intensities of Si ii and C iv increase from network boundary to network center in both parts. However, the intensity of Ne viii shows different trends, namely increasing in the bright part and decreasing in the dark part. In both parts, the Doppler shift of C iv increases steadily from internetwork to network center. The average-profile study reveals that the intensities of the three lines all decline from the network center to internetwork region. The binned intensities of Si ii and Ne viii have a good correlation. We also find that the large blue shift of Ne viii does not coincide with large red shift of C iv. Our results suggest that the network structure is still prominent at the layer where Ne viii is formed in the quiet Sun, and that the magnetic structures expand more strongly in the dark part than in the bright part of this quiet Sun region.Comment: 10 pages,9 figure

    Confinement-induced resonance in quasi-one-dimensional systems under transversely anisotropic confinement

    Full text link
    We theoretically investigate the confinement-induced resonance for quasi-one-dimensional quan- tum systems under transversely anisotropic confinement, using a two-body s-wave scattering model in the zero-energy collision limit. We predict a single resonance for any transverse anisotropy, whose position shows a slight downshift with increasing anisotropy. We compare our prediction with the recent experimental result by Haller et al. [Phys. Rev. Lett. 104, 153203 (2010)], in which two resonances are observed in the presence of transverse anisotropy. The discrepancy between theory and experiment remains to be resolved.Comment: 6 pages, 5 figures, accepted for publication in Phys. Rev.

    Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals

    Full text link
    Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra and transition rates in fourteen isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations. The microscopic QOCH model based on the PC-PK1 energy density functional and δ\delta-interaction pairing is shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic and non-relativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations, and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.Comment: 36 pages, 21 figures, Accepted for Publication in Physical Review

    A Model for Solid 3^3He: II

    Full text link
    We propose a simple Ginzburg-Landau free energy to describe the magnetic phase transition in solid 3^3He. The free energy is analyzed with due consideration of the hard first order transitions at low magnetic fields. The resulting phase diagram contains all of the important features of the experimentally observed ph ase diagram. The free energy also yields a critical field at which the transition from the disordered state to the high field state changes from a first order to a second order one.Comment: This paper has been accepted for publication in Journal of Low Temperature Physics. Use regular Tex, with the D. Eardley version of Macros called jnl.tex. 10 pages, 4 figs available from [email protected]
    • …
    corecore