9,734 research outputs found

    On the Orbits of Low-mass Companions to White Dwarfs and the Fates of the Known Exoplanets

    Full text link
    The ultimate fates of binary companions to stars (including whether the companion survives and the final orbit of the binary) are of interest in light of an increasing number of recently discovered, low-mass companions to white dwarfs (WDs). In this Letter, we study the evolution of a two-body system wherein the orbit adjusts due to structural changes in the primary, dissipation of orbital energy via tides, and mass loss during the giant phases; previous studies have not incorporated changes in the primary's spin. For companions ranging from Jupiter's mass to ~0.3 Msun and primaries ranging from 1-3 Msun, we determine the minimum initial semimajor axis required for the companion to avoid engulfment by the primary during post-main-sequence evolution, and highlight the implications for the ultimate survival of the known exoplanets. We present regions in secondary mass and orbital period space where an engulfed companion might be expected to survive the common envelope phase (CEP), and compare with known M dwarf+WD short-period binaries. Finally, we note that engulfed Earth-like planets cannot survive a CEP. Detection of a first-generation terrestrial planet in the white dwarf habitable zone requires scattering from a several-AU orbit to a high-eccentricity orbit (with a periastron of ~Rsun) from which it is damped into a circular orbit via tidal friction, possibly rendering it an uninhabitable, charred ember.Comment: Replaced with version in Journa

    The formation of high-field magnetic white dwarfs from common envelopes

    Full text link
    The origin of highly-magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star is engulfed by a post-main-sequence giant, the hydrodynamic drag in the envelope of the giant leads to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.Comment: Accepted to Proceedings of the National Academy of Sciences. Under PNAS embargo until time of publicatio

    Higher-order Continuum Approximation for Rarefied Gases

    Full text link
    The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight times is believed to be asymptotic rather than convergent. It is therefore inadvisable to use lower order results to simplify the current approximation as is done in the traditional Chapman-Enskog procedure, since that is an iterative method. By avoiding such recycling of lower order results, one obtains macroscopic equations that are asymptotically equivalent to the ones found in the Chapman-Enskog approach. The new equations contain higher order terms that are discarded in the Chapman-Enskog method. These make a significant impact on the results for such problems as ultrasound propagation. In this paper, it is shown that these results turn out well with relatively little complication when the expansions are carried to second order in the mean free time, for the example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap

    The tachocline revisited

    Full text link
    The solar tachocline is a shear layer located at the base of the solar convection zone. The horizontal shear in the tachocline is likely turbulent, and it is often assumed that this turbulence would be strongly anisotropic as a result of the local stratification. What role this turbulence plays in the tachocline dynamics, however, remains to be determined. In particular, it is not clear whether it would result in a turbulent eddy diffusivity, or anti-diffusivity, or something else entirely. In this paper, we present the first direct numerical simulations of turbulence in horizontal shear flows at low Prandtl number, in an idealized model that ignores rotation and magnetic fields. We find that several regimes exist, depending on the relative importance of the stratification, viscosity and thermal diffusivity. Our results suggest that the tachocline is in the stratified turbulence regime, which has very specific properties controlled by a balance between buoyancy, inertia, and thermal diffusion.Comment: Invited review for the meeting Dynamics of the Sun and Stars: Honoring the Life and Work of Michael J. Thompson (Boulder, Colorado, 24-26 September 2019

    Amplitude Modulation and Relaxation-Oscillation of Counterpropagating Rolls within a Broken-Symmetry Laser-Induced Electroconvection Strip

    Full text link
    We report a liquid-crystal pattern-formation experiment in which we break the lateral (translational) symmetry of a nematic medium with a laser-induced thermal gradient. The work is motivated by an improved measurement (reported here) of the temperature dependence of the electroconvection threshold voltage in planar-nematic 4-methoxybenzylidene-4-butylaniline (MBBA). In contrast with other broken-symmetry-pattern studies that report a uniform drift, we observe a strip of counterpropagating rolls that collide at a sink point, and a strong temporally periodic amplitude modulation within a width of 3-4 rolls about the sink point. The time dependence of the amplitude at a fixed position is periodic but displays a nonsinusoidal relaxation-oscillation profile. After reporting experimental results based on spacetime contours and wavenumber profiles, along with a measurement of the change in the drift frequency with applied voltage at a fixed control parameter, we propose some potential guidelines for a theoretical model based on saddle-point solutions for Eckhaus-unstable states and coupled complex Ginzburg-Landau equations. Published in PRE 73, 036317 (2006).Comment: Published in Physical Review E in March 200
    corecore