511 research outputs found

    Sum-over-states vs quasiparticle pictures of coherent correlation spectroscopy of excitons in semiconductors; femtosecond analogues of multidimensional NMR

    Full text link
    Two-dimensional correlation spectroscopy (2DCS) based on the nonlinear optical response of excitons to sequences of ultrafast pulses, has the potential to provide some unique insights into carrier dynamics in semiconductors. The most prominent feature of 2DCS, cross peaks, can best be understood using a sum-over-states picture involving the many-body eigenstates. However, the optical response of semiconductors is usually calculated by solving truncated equations of motion for dynamical variables, which result in a quasiparticle picture. In this work we derive Green's function expressions for the four wave mixing signals generated in various phase-matching directions and use them to establish the connection between the two pictures. The formal connection with Frenkel excitons (hard-core bosons) and vibrational excitons (soft-core bosons) is pointed out.Comment: Accepted to Phys. Rev.

    Near-field propagation of tsunamis from megathrust earthquakes

    Get PDF
    We investigate controls on tsunami generation and propagation in the near-field of great megathrust earthquakes using a series of numerical simulations of subduction and tsunamigenesis on the Sumatran forearc. The Sunda megathrust here is advanced in its seismic cycle and may be ready for another great earthquake. We calculate the seafloor displacements and tsunami wave heights for about 100 complex earthquake ruptures whose synthesis was informed by reference to geodetic and stress accumulation studies. Remarkably, results show that, for any near-field location: (1) the timing of tsunami inundation is independent of slipdistribution on the earthquake or even of its magnitude, and (2) the maximum wave height is directly proportional to the vertical coseismic displacement experienced at that location. Both observations are explained by the dominance of long wavelength crustal flexure in near-field tsunamigenesis. The results show, for the first time, that a single estimate of vertical coseismic displacement might provide a reliable short-term forecast of the maximum height of tsunami waves

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200

    BN domains included into carbon nanotubes: role of interface

    Full text link
    We present a density functional theory study on the shape and arrangement of small BN domains embedded into single-walled carbon nanotubes. We show a strong tendency for the BN hexagons formation at the simultaneous inclusion of B and N atoms within the walls of carbon nanotubes. The work emphasizes the importance of a correct description of the BN-C frontier. We suggest that BN-C interface will be formed preferentially with the participation of N-C bonds. Thus, we propose a new way of stabilizing the small BN inclusions through the formation of nitrogen terminated borders. The comparison between the obtained results and the available experimental data on formation of BN plackets within the single walled carbon nanotubes is presented. The mirror situation of inclusion of carbon plackets within single walled BN nanotubes is considered within the proposed formalism. Finally, we show that the inclusion of small BN plackets inside the CNTs strongly affects the electronic character of the initial systems, opening a band gap. The nitrogen excess in the BN plackets introduces donor states in the band gap and it might thus result in a promising way for n-doping single walled carbon nanotubes

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig

    Future Seismic Hazards in Southern California - Phase I: Implications of the 1992 Landers Earthquake Sequence

    Get PDF
    Southern California and its seismologists received a wake-up call on June 28, 1992. The largest earthquake to strike southern California in 40 years occurred near the town of Landers, located 30 km north of the San Andreas fault. It had a magnitude of 7.5 (M7.5). Three and one-half hours later, a M6.5 aftershock struck the Big Bear area 40 km (kilometers) to the west of Landers. An ad hoc working group was rapidly convened in July, 1992, to evaluate how the Landers-Big Bear earthquake sequence might affect future large earthquakes along major faults in southern California. In particular, what are the chances of large earthquakes in the next few years and how do they compare to previous estimates (such as those of the Working Group on California Earthquake Probabilities -- WGCEP, 1988)? Such an evaluation was made for central California after the Lorna Prieta earthquake of 1989 (WGCEP, 1990). The charge to the Landers ad hoc working group included analyzing the seismicity for the last several years in southern California and the new paleoseismic, geologic, and geodetic data recently available for southern California. To inform the public about the potential hazard of plausible earthquakes, the working group was also asked to map the predicted severity of ground shaking for such earthquakes compared to that from the Landers earthquake

    Stochastic Heterostructures in B/N-Doped Carbon Nanotubes

    Full text link
    Carbon nanotubes are one-dimensional and very narrow. These obvious facts imply that under doping with boron and nitrogen, microscopic doping inhomogeneity is much more important than for bulk semiconductors. We consider the possibility of exploiting such fluctuations to create interesting devices. Using self-consistent tight-binding (SCTB), we study heavily doped highly compensated nanotubes, revealing the spontaneous formation of structures resembling chains of random quantum dots, or nano-scale diode-like elements in series. We also consider truly isolated impurities, revealing simple scaling properties of bound state sizes and energies.Comment: 4 pages RevTeX, 4 PostScript figure

    C-reactive protein, interleukin-6, and prostate cancer risk in men aged 65 years and older.

    Get PDF
    Inflammation is believed to play a role in prostate cancer (PCa) etiology, but it is unclear whether inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6) associate with PCa risk in older men. Using Cox regression, we assessed the relationship between baseline concentrations of CRP and IL-6 and the subsequent PCa risk in the Cardiovascular Health Study, a population-based cohort study of mostly European American men of ages >64 years (n = 2,234; mean follow-up = 8.7 years; 215 incident PCa cases). We also tested associations between CRP and IL-6 tagSNPs and PCa risk, focusing on SNPs that are known to associate with circulating CRP and/or IL-6. Neither CRP nor IL-6 blood concentrations was associated with PCa risk. The C allele of IL-6 SNP rs1800795 (-174), a known functional variant, was associated with increased risk in a dominant model (HR = 1.44; 95% CI = 1.03-2.01; p = 0.03), but was not statistically significant after accounting for multiple tests (permutation p = 0.21). Our results suggest that circulating CRP and IL-6 do not influence PCa risk. SNPs at the CRP locus are not associated with PCa risk in this cohort, while the association between rs1800795 and PCa risk warrants further investigation
    • …
    corecore