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Abstract 15 

We investigate controls on tsunami generation and propagation in the near-field of 

great megathrust earthquakes using a series of numerical simulations of 

subduction and tsunamigenesis on the Sumatran forearc. The Sunda megathrust 

here is advanced in its seismic cycle and may be ready for another great 

earthquake. We calculate the seafloor displacements and tsunami wave heights for 20 

about 100 complex earthquake ruptures whose synthesis was informed by 

reference to geodetic, and stress accumulation studies. Remarkably, results show 

that, for any near-field location: 1) the timing of tsunami inundation is 

independent of slip-distribution on the earthquake or even of its magnitude and 2) 

the maximum wave height is directly proportional to the vertical coseismic 25 

displacement experienced at that location. Both observations are explained by the 

dominance of long wavelength crustal flexure in near-field tsunamigenesis. The 

results show, for the first time, that a single estimate of vertical coseismic 

displacement might provide a reliable short-term forecast of the maximum height 

of tsunami waves.  30 

 

Introduction 

The great magnitude 9.2 Sumatra-Andaman earthquake of 26 December 2004 produced 

vertical seafloor displacements approaching 5m above the Sunda trench southwest of 

the Nicobar Islands and offshore Aceh (Subarya, et al. 2006; Vigny, et al. 2005; 35 

Piatanesi & Lorito S. 2007; Chlieh,  et al. 2006) creating a large tsunami that 

propagated throughout the Indian Ocean, killing more than 250,000 people. Waves 

incident on western Aceh reached 30m in height. On March 28 2005 the megathrust 

ruptured again in the magnitude 8.7 Simeulue-Nias earthquake but in this case the 
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waves nowhere exceeded 4m and few people were killed by them. The Simeulue-Nias 40 

earthquake nucleated in an area whose stress had been increased by the Sumatra-

Andaman earthquake (McCloskey et al. 2005) Follow-up studies (Nalbant, et al. 2005; 

Pollitz, et al. 2006) show that it has additionally perturbed the surrounding stress field 

and has, in particular, brought the megathrust under the Batu and Mentawai Islands 

closer to failure. Recent aseismic slip (Briggs et al. 2006) has further increased the 45 

stress (Fig. 1). Paleogeodetic studies show that the megathrust under the Batu Islands is 

slipping at about the rate of plate convergence (Natawidjaja et al. 2004) while under 

Siberut Island it has been locked since the great 1797 earthquake and has recovered 

nearly all the strain released then (Natawidjaja et al. 2006) 

The contrasting 2004 and 2005 events highlight the difficulties attendant on preparing 50 

coastal communities for the impact of tsunamis from earthquakes whose slip-

distributions and even magnitudes are essentially unknowable even where, as is the case 

on the Sunda megathrust to the west of Sumatra, there is clear evidence of an impending 

great earthquake. Cities on the west coast of Sumatra, notably Padang and Bengkulu 

with combined populations in excess of 1 million, lie on low coastal plains and are 55 

particularly threatened by tsunamis generated by Mentawai segment earthquakes. Here 

we attempt to understand these threats by simulating tsunamis which would result from 

a wide range of plausible earthquakes sources. 

 

Modelling Scheme 60 

Our simulations, which will be described in detail elsewhere, combine sophisticated 

numerical modelling with the best current geologically-constrained understanding of the 

state of the Sunda megathrust to forecast the range of possible tsunamis which might be 

experienced following the next great Mentawai Island earthquake. We define four likely 

fault segments which are suggested by the structural geology of the megathrust, by 65 
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historical earthquakes and by long-term and recent stress accumulation. All simulated 

earthquakes are on the same 3D structure. The Sunda trench in the area of interest is 

approximately linear, strikes at about 140° and extends from the equator to about 6.5°S. 

The plate interface dips at about 15° resulting in a down-dip seismogenic width of about 

180km. We simulate about 100 or so complex slip distributions, around 25 for each 70 

fault segment length, which have been judged, by reference to paleoseismic and 

paleogeodetic data, to be likely candidates for the future event (see for example, Briggs 

et al. 2006; Prawirodirdjo, L. et al., 1997). We make no assumptions about the location 

of maximum slip on the fault, whether shallow near the trench or deep under the 

volcanic arc, but the slip models conform to the observed fractal distribution (Mai & 75 

Beroza, 2002) though our main results are not sensitive to a wide range of plausible slip 

distributions. We note that these slip distributions conform to constraints on the gradient 

of slip which are set by material and constitutive properties of the lithosphere and have 

been used elsewhere to model slip heterogeneity in tsunamigenesis (Geist 2002). Using 

a finite-element model of the elastic structure of the lithosphere customised for the 80 

western Sumatran forearc and including the effects of topography, we calculate the 

seafloor displacements which would result from each selected slip distribution. These 

displacements define boundary conditions for the tsunami simulation. The non-linear 

shallow water equations are solved numerically using a finite difference scheme on a 

staggered grid (Mader 2004). The initial sea-surface elevation is assumed to be equal to 85 

the coseismic vertical displacement of the seafloor calculated using the elastic model, 

and the initial velocity field is assumed to be zero everywhere (Satake, 2002). We apply 

a pure reflection boundary condition along the true coastline at which the depth has 

everywhere been set to 10m to avoid numerical instabilities. This boundary condition 

ensures that all the tsunami kinetic energy is converted into potential energy at the coast 90 

and thus, while we do not simulate the complex processes of inundation which are 
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controlled by fine scale details of the near-shore topography, our predicted coastal wave 

heights include both the effect of shoaling to 10m depth and the interaction with the 

solid boundary.  

 95 

Results  

We report on the systematic control of tsunami waveforms in the near-field, Formally 

defined here as that region which experiences vertical co-seismic displacement which is 

measurable with current GPS technology. We find that the shape of the tsunami wave 

train recorded at any tide gauge is, to first order, independent of the slip-distribution or 100 

even of the magnitude of the earthquake that caused it. Figure 2 illustrates this 

independence with respect of two very different simulated Mentawai earthquakes. Event 

I is a 330km long re-rupture of the 1797 segment and with magnitude 8.3 while Event II 

is a 630km rupture of both the 1797 and 1833 segments with magnitude 9.0. Despite the 

great difference in both magnitude and location of high slip regions in the rupture with 105 

respect to the tide gauge, the shapes of the wave-height time-series are different only in 

detail; the timing of the main tsunami phases is constant. Conversely, the maximum 

height of the waves differs by an order of magnitude. This similarity, which is observed 

for all 100 simulations at all simulated tide gauges, allows the accurate prediction of the 

arrival time of flooding phases. The first wave crest, for example, arrives at Padang 110 

33.5±2.5 (2σ) minutes after the event origin. Similar predictions can be made for the 

other five near-field tide gauges in this study. 

Another feature of these curves is the visual similarity of the z-component of coseismic 

deformation experienced at the tide gauges, as indicated by the intercept on the height 

axes, despite the axes being scaled for the maximum height of the wave and not for the 115 

intercept; the ratio of coseismic displacement to maximum wave height is constant for 
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these two events. Surprisingly, this observation is robust for all simulations and for all 

simulated tide gauges. Figure 3 shows the relationship between near-field vertical 

coseismic displacement and maximum observed tsunami height for three stations. This 

relationship holds for the other three tide gauges in the study though the scatter on the 120 

data is significantly higher for stations to seaward of the Islands. The coseismic 

displacement also predicts the depth of the deepest tsunami trough. Note that these 

results are not related to Plafker’s rule of thumb (Okal and Synolakis, 2004), which is, 

incidently, reproduced in this study, relating the maximum slip on the fault to the 

maximum observed wave height. These results show that the local tsunami energy is 125 

controlled by the local coseismic deformation, rather than the maximum deformation 

which may occur at many hundreds of kilometres distance and which generally do not 

predict the local tsunami at any specific point. 

 

Discussion and Conclusions 130 

The explanation for these relationships is straightforward. The entire near-field region 

experiences a well defined pattern of vertical coseismic deformation, upward under the 

forearc high and downward under the forearc basin and the Sumatran coast, which is 

controlled by the geometry of the subduction interface, and which is extended laterally 

along the length of the rupture (Fig. 4a). Whereas the amplitude of this wave varies 135 

strongly with the earthquake, to first order, the wavelength is always about 300km and 

its ends, where vertical coseismic deformation is zero, are fixed at the trench and just 

landward of the coast (Fig. 4b). These features are largely independent of the slip-

distribution or magnitude of the event. Since the initial tsunami waves are driven by the 

coseismic seafloor displacement their initial locations are controled by this 140 

instantaneous long wavelength crustal flexing, no matter what its amplitude, and 

propagate perpendicularly to the strike of the megathrust in the near field. Wave phase 
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velocities are controlled by bathymetry and the observed waveforms at every site are, 

therefore, also largely independent of the details of the causal event.  

The strong correlation between maximum wave height (and minimum trough depth) and 145 

the vertical coseismic displacement at any point can also be understood by reference to 

this long wavelength crustal flexure. Since local tsunamis propagate normal to the axis 

of deformation, tsunami energy at any point is controlled, again to first order, by the 

potential energy of the coseismic tsunami wave along a line perpendicular to this axis 

through the point of interest. The potential energy is therefore proportional to the 150 

integral of the coseismic seafloor movement . Now we have seen that the amplitude of 

this profile is strongly earthquake dependent, thus the height of the resulting tsunami 

depends strongly on the event. However, since the general shape of the deformation 

wave is fixed both in wavelength and phase, an estimate of its amplitude at any point, 

ideally some distance from a node of the flexure, is a good first order predictor of the 155 

entire potential energy line integral and thus the amplitude of the resulting waves. Given 

the generality of this explanation we expect that the relationships reported in this paper 

will be applicable to any subduction zone though their details will be modified by local 

crustal geometry. 

These results may assist planning of preparedness strategies throughout the western 160 

Sumatran forearc complex. They show that the travel times of damaging tsunami phases 

in the near-field are subject to strong lower bounds, of about 30 minutes for the 

Sumatran coast and somewhat less for the off-shore islands, which are independent of 

the nature of the seismic source. Validation of these results using recent earthquakes is 

not straightforward. The accurate measurement of phase arrival times requires the 165 

operation of tide gauges with high-frequency sampling and are not available in western 

Sumatra for the recent earthquakes. Travel times simulated here are, however, 

consistent with field observations made after the 2004 tsunami (eg. 
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http://ioc.unesco.org/iosurveys) and by the low-frequency tide gauge in Sibolga 

following the 2005 event (P. Manurung personal communication). These short travel 170 

times preclude the possibility of using ocean wide tsunami warning systems in 

preparedness planning for western Sumatra. On the other hand, the strong correlations 

between coseismic displacement and the height of the tsunami wave, which have been 

demonstrated here for failure of the Sunda megathrust under the Mentawai Islands, offer 

real hope of producing accurate short-term forecasts of tsunami height on the basis of a 175 

single GPS vertical coseismic displacement estimate which could be made in a few 

minutes following the earthquake origin (see also Blewitt et al. 2006). These 

correlations, of course, are valid only for tsunamigenesis by dip-slip failure on the 

megathrust without significant contributions from other processes such as submarine 

landslide or normal fault rupture in the hanging wall block which have been invoked to 180 

explain anomalous tsunami energy following other earthquakes (Pelayo & Wiens, 1992; 

Heinrich et al. 2000). They also assume that slip on the earthquake is rapid, unlike the 

slow 2006 Java earthquake which efficiently generated a large tsunami in the absence of 

strong shaking on shore. Recent and historical earthquakes in western Sumatra would 

appear to satisfy these conditions.  185 
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