16,628 research outputs found

    Precautionary saving and precautionary wealth

    Get PDF
    This is an entry for The New Palgrave Dictionary of Economics, 2nd Ed. JEL Klassifikation: C61, D11, E2

    Social Security, Retirement and Wealth: Theory and Implications

    Get PDF
    The effect of Social Security rules on the age people choose to retire can be critical in evaluating proposed changes to those rules. This research derives a theory of retirement that views retirement as a special type of labor supply decision. This decision is driven by wealth and substitution effects on labor supply, interacting with a fixed cost of working that makes low hours of work unattractive. The theory is tractable analytically, and therefore well-suited for analyzing proposals that affect Social Security. This research examines how retirement age varies with generosity of Social Security benefits. A ten-percent reduction in the value of benefits would lead individuals to postpone retirement by between one-tenth and one-half a year. Individuals who are relatively buffered from the change—because they are wealthier or because they are younger and therefore can more easily increase saving to offset the cut in benefits— will have smaller changes in their retirement ages. Authors’ Acknowledgements This work was supported by a grant from the Social Security Administration through the Michigan Retirement Research Center (Grant #10-P-98358-5). The opinions and conclusions are solely those of the authors and should not be considered as representing the opinions or policy of the Social Security Administration or any agency of the Federal Government. The authors gratefully acknowledge this support.

    Liquidity Constraints and Precautionary Saving

    Get PDF
    Economists working with numerical solutions to the optimal consumption/saving problem under uncertainty have long known that there are quantitatively important interactions between liquidity constraints and precautionary saving behavior. This paper provides the analytical basis for those interactions. First, we explain why the introduction of a liquidity constraint increases the precautionary saving motive around levels of wealth where the constraint becomes binding. Second, we provide a rigorous basis for the oft-noted similarity between the effects of introducing uncertainty and introducing constraints, by showing that in both cases the effects spring from the concavity in the consumption function which either uncertainty or constraints can induce. We further show that consumption function concavity, once created, propagates back to consumption functions in prior periods. Finally, our most surprising result is that the introduction of additional constraints beyond the first one, or the introduction of additional risks beyond a first risk, can actually reduce the precautionary saving motive, because the new constraint or risk can hide' the effects of the preexisting constraints or risks.

    Modelling the cAMP pathway using BioNessie, and the use of BVP techniques for solving ODEs (Poster Presentation)

    Get PDF
    Copyright @ 2007 Gu et al; licensee BioMed Central LtdBiochemists often conduct experiments in-vivo in order to explore observable behaviours and understand the dynamics of many intercellular and intracellular processes. However an intuitive understanding of their dynamics is hard to obtain because most pathways of interest involve components connected via interlocking loops. Formal methods for modelling and analysis of biochemical pathways are therefore indispensable. To this end, ODEs (ordinary differential equations) have been widely adopted as a method to model biochemical pathways because they have an unambiguous mathematical format and are amenable to rigorous quantitative analysis. BioNessie http://www.bionessie.com webcite is a workbench for the composition, simulation and analysis of biochemical networks which is being developed in by the Systems Biology team at the Bioinformatics Research Centre as a part of a large DTI funded project 'BPS: A Software Tool for the Simulation and Analysis of Biochemical Networks' http://www.brc.dcs.gla.ac.uk/projects/dti_beacon webcite. BioNessie is written in Java using NetBeans Platform libraries that makes it platform independent. The software employs specialised differential equations solvers for stiff and non-stiff systems to produce model simulation traces. BioNessie provides a user-friendly interfact that comes up with an intuitive tree-based graphical layout, an edition function to SBML-compatible models and feature of data output

    Weather on Other Worlds. IV. Hα\alpha emission and photometric variability are not correlated in L0-T8 dwarfs

    Full text link
    Recent photometric studies have revealed that surface spots that produce flux variations are present on virtually all L and T dwarfs. Their likely magnetic or dusty nature has been a much-debated problem, the resolution to which has been hindered by paucity of diagnostic multi-wavelength observations. To test for a correlation between magnetic activity and photometric variability, we searched for Hα\alpha emission among eight L3-T2 ultra-cool dwarfs with extensive previous photometric monitoring, some of which are known to be variable at 3.6 μ\mum or 4.5 μ\mum. We detected Hα\alpha only in the non-variable T2 dwarf 2MASS J12545393-0122474. The remaining seven objects do not show Hα\alpha emission, even though six of them are known to vary photometrically. Combining our results with those for 86 other L and T dwarfs from the literature show that the detection rate of Hα\alpha emission is very high (94%\%) for spectral types between L0 and L3.5 and much smaller (20%\%) for spectral types \geL4, while the detection rate of photometric variability is approximately constant (30%\%-55%\%) from L0 to T8 dwarfs. We conclude that chromospheric activity, as evidenced by Hα\alpha emission, and large-amplitude photometric variability are not correlated. Consequently, dust clouds are the dominant driver of the observed variability of ultra-cool dwarfs at spectral types at least as early as L0.Comment: 12 pages, 4 figures, accepted for publication in Ap

    Imputing Risk Tolerance from Survey Responses

    Get PDF
    Economic theory assigns a central role to risk preferences. This paper develops a measure of relative risk tolerance using responses to hypothetical income gambles in the Health and Retirement Study. In contrast to most survey measures that produce an ordinal metric, this paper shows how to construct a cardinal proxy for the risk tolerance of each survey respondent. The paper also shows how to account for measurement error in estimating this proxy and how to obtain consistent regression estimates despite the measurement error. The risk tolerance proxy is shown to explain differences in asset allocation across households.

    An Introduction to the Inverse Quantum Bound State Problem in One Dimension

    Get PDF
    A technique to reconstruct one-dimensional, reflectionless potentials and the associated quantum wave functions starting from a finite number of known energy spectra is discussed. The method is demonstrated using spectra that scale like the lowest energy states of standard problems encountered in the undergraduate curriculum such as: the infinite square well, the simple harmonic oscillator, and the one-dimensional hydrogen atom.Comment: 10 pages, 10 figures, Submitted to Am. J. Phys. August 201

    Betti number signatures of homogeneous Poisson point processes

    Full text link
    The Betti numbers are fundamental topological quantities that describe the k-dimensional connectivity of an object: B_0 is the number of connected components and B_k effectively counts the number of k-dimensional holes. Although they are appealing natural descriptors of shape, the higher-order Betti numbers are more difficult to compute than other measures and so have not previously been studied per se in the context of stochastic geometry or statistical physics. As a mathematically tractable model, we consider the expected Betti numbers per unit volume of Poisson-centred spheres with radius alpha. We present results from simulations and derive analytic expressions for the low intensity, small radius limits of Betti numbers in one, two, and three dimensions. The algorithms and analysis depend on alpha-shapes, a construction from computational geometry that deserves to be more widely known in the physics community.Comment: Submitted to PRE. 11 pages, 10 figure

    The Trilinear Hamiltonian: A Zero Dimensional Model of Hawking Radiation from a Quantized Source

    Get PDF
    We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum gravitational degrees of freedom.Comment: 18 pages, 6 figures, Submitted to New Journal of Physics focus issue: "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects

    Universal properties of boundary and interface charges in continuum models of one-dimensional insulators

    Get PDF
    We study single-channel continuum models of one-dimensional insulators induced by periodic potential modulations which are either terminated by a hard wall (the boundary model) or feature a single region of dislocations and/or impurity potentials breaking translational invariance (the interface model). We investigate the universal properties of excess charges accumulated near the boundary and the interface, respectively. We find a rigorous analytic proof for the earlier observed linear dependence of the boundary charge on the phase of the periodic potential modulation as well as extend these results to the interface model. The linear dependence on the phase shows a universal value for the slope and is intersected by discontinuous jumps by plus or minus one electron charge at the phase points where localized states enter or leave a band of extended states. Both contributions add up such that the periodicity of the excess charge in the phase over a 2π cycle is maintained. While in the boundary model this property is usually associated with the bulk-boundary correspondence, in the interface model a correspondence of scattering state and localized state contributions to the total interface charge are unveiled on the basis of the so-called nearsightedness principle
    corecore