19,494 research outputs found

    Superfield approach to symmetry invariance in QED with complex scalar fields

    Full text link
    We show that the Grassmannian independence of the super Lagrangian density, expressed in terms of the superfields defined on a (4, 2)-dimensional supermanifold, is a clear-cut proof for the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST invariance of the corresoponding four (3 + 1)-dimensional (4D) Lagrangian density that describes the interaction between the U(1) gauge field and the charged complex scalar fields. The above 4D field theoretical model is considered on a (4, 2)-dimensional supermanifold parametrized by the ordinary four spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). Geometrically, the (anti-)BRST invariance is encoded in the translation of the super Lagrangian density along the Grassmannian directions of the above supermanifold such that the outcome of this shift operation is zero.Comment: LaTeX file, 14 pages, minor changes in the title and text, version to appear in ``Pramana - Journal of Physics'

    Gauge Transformations, BRST Cohomology and Wigner's Little Group

    Full text link
    We discuss the (dual-)gauge transformations and BRST cohomology for the two (1 + 1)-dimensional (2D) free Abelian one-form and four (3 + 1)-dimensional (4D) free Abelian 2-form gauge theories by exploiting the (co-)BRST symmetries (and their corresponding generators) for the Lagrangian densities of these theories. For the 4D free 2-form gauge theory, we show that the changes on the antisymmetric polarization tensor e^{\mu\nu} (k) due to (i) the (dual-)gauge transformations corresponding to the internal symmetry group, and (ii) the translation subgroup T(2) of the Wigner's little group, are connected with each-other for the specific relationships among the parameters of these transformation groups. In the language of BRST cohomology defined w.r.t. the conserved and nilpotent (co-)BRST charges, the (dual-)gauge transformed states turn out to be the sum of the original state and the (co-)BRST exact states. We comment on (i) the quasi-topological nature of the 4D free 2-form gauge theory from the degrees of freedom count on e^{\mu\nu} (k), and (ii) the Wigner's little group and the BRST cohomology for the 2D one-form gauge theory {\it vis-{\`a}-vis} our analysis for the 4D 2-form gauge theory.Comment: LaTeX file, 29 pages, misprints in (3.7), (3.8), (3.9), (3.13) and (4.14)corrected and communicated to IJMPA as ``Erratum'

    Wigner's little group and BRST cohomology for one-form Abelian gauge theory

    Full text link
    We discuss the (dual-)gauge transformations for the gauge-fixed Lagrangian density and establish their intimate connection with the translation subgroup T(2) of the Wigner's little group for the free one-form Abelian gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Though the relationship between the usual gauge transformation for the Abelian massless gauge field and T(2) subgroup of the little group is quite well-known, such a connection between the dual-gauge transformation and the little group is a new observation. The above connections are further elaborated and demonstrated in the framework of Becchi-Rouet-Stora-Tyutin (BRST) cohomology defined in the quantum Hilbert space of states where the Hodge decomposition theorem (HDT) plays a very decisive role.Comment: LaTeX file, 17 pages, Journal-ref. give

    Geometrical Aspects Of BRST Cohomology In Augmented Superfield Formalism

    Full text link
    In the framework of augmented superfield approach, we provide the geometrical origin and interpretation for the nilpotent (anti-)BRST charges, (anti-)co-BRST charges and a non-nilpotent bosonic charge. Together, these local and conserved charges turn out to be responsible for a clear and cogent definition of the Hodge decomposition theorem in the quantum Hilbert space of states. The above charges owe their origin to the de Rham cohomological operators of differential geometry which are found to be at the heart of some of the key concepts associated with the interacting gauge theories. For our present review, we choose the two (1+1)(1 + 1)-dimensional (2D) quantum electrodynamics (QED) as a prototype field theoretical model to derive all the nilpotent symmetries for all the fields present in this interacting gauge theory in the framework of augmented superfield formulation and show that this theory is a {\it unique} example of an interacting gauge theory which provides a tractable field theoretical model for the Hodge theory.Comment: LaTeX file, 25 pages, Ref. [49] updated, correct page numbers of the Journal are give

    Rigid Rotor as a Toy Model for Hodge Theory

    Full text link
    We apply the superfield approach to the toy model of a rigid rotor and show the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations, under which, the kinetic term and action remain invariant. Furthermore, we also derive the off-shell nilpotent and absolutely anticommuting (anti-) co-BRST symmetry transformations, under which, the gauge-fixing term and Lagrangian remain invariant. The anticommutator of the above nilpotent symmetry transformations leads to the derivation of a bosonic symmetry transformation, under which, the ghost terms and action remain invariant. Together, the above transformations (and their corresponding generators) respect an algebra that turns out to be a physical realization of the algebra obeyed by the de Rham cohomological operators of differential geometry. Thus, our present model is a toy model for the Hodge theory.Comment: LaTeX file, 22 page

    New method for critical failure prediction of complex systems

    Get PDF
    Rigorous analytical technique, called criticality determination methodology /or CD technique/ determines the probability that a given complex system will successfully achieve stated objectives. The CD technique identifies critical elements of the system by a failure mode and effects analysis

    Superfield Approach to (Non-)local Symmetries for One-Form Abelian Gauge Theory

    Full text link
    We exploit the geometrical superfield formalism to derive the local, covariant and continuous Becchi-Rouet-Stora-Tyutin (BRST) symmetry transformations and the non-local, non-covariant and continuous dual-BRST symmetry transformations for the free Abelian one-form gauge theory in four (3+1)(3 + 1)-dimensions (4D) of spacetime. Our discussion is carried out in the framework of BRST invariant Lagrangian density for the above 4D theory in the Feynman gauge. The geometrical origin and interpretation for the (dual-)BRST charges (and the transformations they generate) are provided in the language of translations of some superfields along the Grassmannian directions of the six (4+2) 4 + 2)-dimensional supermanifold parametrized by the four spacetime and two Grassmannian variables.Comment: LaTeX file, 23 page
    • …
    corecore