235 research outputs found

    Inelastic nucleon contributions in (e,e)(e,e^\prime) nuclear response functions

    Full text link
    We estimate the contribution of inelastic nucleon excitations to the (e,e)(e,e^\prime) inclusive cross section in the CEBAF kinematic range. Calculations are based upon parameterizations of the nucleon structure functions measured at SLAC. Nuclear binding effects are included in a vector-scalar field theory, and are assumed have a minimal effect on the nucleon excitation spectrum. We find that for q\lsim 1 GeV the elastic and inelastic nucleon contributions to the nuclear response functions are comparable, and can be separated, but with roughly a factor of two uncertainty in the latter from the extrapolation from data. In contrast, for q\rsim 2 GeV this uncertainty is greatly reduced but the elastic nucleon contribution is heavily dominated by the inelastic nucleon background.Comment: 20 pages, 7 figures available from the authors at Department of Physics and Astronomy, University of Rochester, Rochester NY 1462

    Exact 4He Spectral Function in a Semirealistic NN Potential Model

    Get PDF
    The spectral function of 4He is calculated with the Lorentz integral transform method in a large energy and momentum range. The excitation spectrum of the residual 3N-system is fully taken into account. The obtained spectral function is used to calculate the quasi elastic longitudinal (e,e') response R_l of 4He for q=300, 400, and 500 MeV/c. Comparison with the exact R_l shows a rather sizeable disagreement except in the quasi elastic peak, where the differences reduce to about 10% at q=500 MeV/c. It is shown as well that very simple momentum distribution approximations for the spectral function provide practically the same results for R_l as the exact spectral function.Comment: 7 pages, Latex (Revtex), 4 Postscript figures, to appear in Phys. Rev.

    A sensorless initial rotor position's estimation for permanent magnet synchronous machines

    Get PDF
    Permanent magnet synchronous motors for the effective start require information about the initial position of a rotor. In this regard, most systems use position sensors, which substantially increase entirely a cost of an electrical drive [1-3]. The aim of this article is to develop a new method, allowing determining the absolute angular position of the permanent magnet synchronous motors' rotor [4,5]. With a certain voltage pulses applied to the motor, its stator is magnetized by currents leakage in the windings. This allows using a special algorithm to calculate the absolute position of the rotor without using any motor parameters [6]. Simulation results prove the simplicity and efficiency of this method for determining an initial position of the permanent magnet synchronous motors' rotor. Thus, this method can be widely used in the electrical industry

    Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions

    Get PDF
    This work extends the concept of seniority number, which has been widely used for classifying N-electron Slater determinants, to wave functions of N electrons and spin S, as well as to N-electron spin-adapted Hilbert spaces. We propose a spin-free formulation of the seniority number operator and perform a study on the behavior of the expectation values of this operator under transformations of the molecular basis sets. This study leads to propose a quantitative evaluation for the convergence of the expansions of the wave functions in terms of Slater determinants. The non-invariant character of the seniority number operator expectation value of a wave function with respect to a unitary transformation of the molecular orbital basis set, allows us to search for a change of basis which minimizes that expectation value. The results found in the description of wave functions of selected atoms and molecules show that the expansions expressed in these bases exhibit a more rapid convergence than those formulated in the canonical molecular orbital bases and even in the natural orbital ones.Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Torre, Alicia. Universidad del País Vasco. Facultad de Ciencia y Tecnología. Departamento de Química Física; España;Fil: Lain, Luis. Universidad del País Vasco. Facultad de Ciencia y Tecnología. Departamento de Química Física; España;Fil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Configuration interaction wave functions: A seniority number approach

    Get PDF
    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Torre, Alicia. Universidad del Pais Vasco; EspañaFil: Lain, Luis . Universidad del Pais Vasco; EspañaFil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Oña, Ofelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Chiral Perturbation Theory and the pp -> pp pi0 Reaction Near Threshold

    Full text link
    A chiral-perturbative consideration of the near-threshold pp -> pp pi0 reaction indicates that the pion-rescattering term has a substantial energy and momentum dependence. The existing calculations that incorporate this dependence give pion rescattering contributions significantly larger than those of the conventional treatment, and this enhanced rescattering term interferes destructively with the one-body impulse term, leading to theoretical cross sections that are much smaller than the observed values. However, since the existing calculations are based on coordinate-space representation, they involve a number of simplifying assumptions about the energy-momentum flow in the rescattering diagram, even though the delicate interplay between the one-body and two-body terms makes it desirable to avoid these kinematical assumptions. We carry out here a momentum-space calculation that retains the energy-momentum dependence of the vertices as predicted by chiral perturbation theory. Our improved treatment increases the rescattering amplitude by a factor of 3 over the value obtained in the r-space calculations. The pp -> pp pi0 transition amplitude, which is now dominated by the rescattering term, leads to the cross section much larger than what was reported in the approximate r-space calculations. Thus, the extremely small cross sections obtained in the previous chiral perturbative treatments of this reaction should be considered as an accidental consequence of the approximations employed rather than a general feature.Comment: 25 pages,REVTEX, 5 ps figure

    Relativistic Coulomb Sum Rules for (e,e)(e,e^\prime)

    Full text link
    A Coulomb sum rule is derived for the response of nuclei to (e,e)(e,e^\prime) scattering with large three-momentum transfers. Unlike the nonrelativistic formulation, the relativistic Coulomb sum is restricted to spacelike four-momenta for the most direct connection with experiments; an immediate consequence is that excitations involving antinucleons, e.g., NNˉN{\bar N} pair production, are approximately eliminated from the sum rule. Relativistic recoil and Fermi motion of target nucleons are correctly incorporated. The sum rule decomposes into one- and two-body parts, with correlation information in the second. The one-body part requires information on the nucleon momentum distribution function, which is incorporated by a moment expansion method. The sum rule given through the second moment (RCSR-II) is tested in the Fermi gas model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author
    corecore