621 research outputs found

    Decrease of deforestation in Protected Areas of Madagascar during the Covid-19 years

    Get PDF
    Deforestation poses a significant threat to global biodiversity and ecosystem services. This study focuses on estimating the deforestation within Protected Areas (PAs) in Madagascar over a 21-year period from 2001 to 2022. A novel methodology utilizing remote sensing data and specific thresholds of tree canopy density is employed to estimate annual deforestation rates and identify trends and patterns within PAs. The analysis reveals significant deforestation in the PA network over the last decade, particularly in 2014, 2017, 2018, and 2019. Notably, the lowest annual deforestation rates were estimated during the Covid-19 years of 2020 (0.66%), 2021 (0.62%), and the subsequent year in 2022 (0.67%) when considering the entire network of 103 PAs with natural forests from 2013 to 2022.   Résumé La déforestation constitue une menace importante pour la biodiversité mondiale et les services écosystémiques. Cette étude se concentre sur l'évaluation de l'efficacité des aires protégées (AP) pour lutter contre la déforestation à Madagascar sur une période de 21 ans, de 2001 à 2022. Une méthodologie novatrice utilisant des données de télédétection et des seuils spécifiques de densité du couvert arboré est employée pour estimer les taux annuels de déforestation et identifier les tendances et les modèles au sein des AP. Au cours de la dernière décennie, l'analyse révèle une déforestation significative dans le réseau des AP au cours de certaines années, notamment en 2014, 2017, 2018 et 2019. En revanche, il est intéressant de noter qu'entre 2013 et 2022, les taux annuels de déforestation les plus bas ont été estimés pendant les années de Covid-19 en 2020 (0,66 %), 2021 (0,62 %) et l'année suivante en 2022 (0,67 %) sur l’ensemble du réseau des 103 AP avec des forêts naturelles

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Measurement of the nuclear modification factor of b-jets in 5.02 TeV Pb+Pb collisions with the ATLAS detector

    Get PDF

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Modelling and computational improvements to the simulation of single vector-boson plus jet processes for the ATLAS experiment

    Get PDF
    This paper presents updated Monte Carlo configurations used to model the production of single electroweak vector bosons (W, Z/γ∗) in association with jets in proton-proton collisions for the ATLAS experiment at the Large Hadron Collider. Improvements pertaining to the electroweak input scheme, parton-shower splitting kernels and scale-setting scheme are shown for multi-jet merged configurations accurate to next-to-leading order in the strong and electroweak couplings. The computational resources required for these set-ups are assessed, and approximations are introduced resulting in a factor three reduction of the per-event CPU time without affecting the physics modelling performance. Continuous statistical enhancement techniques are introduced by ATLAS in order to populate low cross-section regions of phase space and are shown to match or exceed the generated effective luminosity. This, together with the lower per-event CPU time, results in a 50% reduction in the required computing resources compared to a legacy set-up previously used by the ATLAS collaboration. The set-ups described in this paper will be used for future ATLAS analyses and lay the foundation for the next generation of Monte Carlo predictions for single vector-boson plus jets production. [Figure not available: see fulltext.]

    Search for neutral long-lived particles in pp collisions at √s = 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    A search for decays of pair-produced neutral long-lived particles (LLPs) is presented using 139 fb−1 of proton-proton collision data collected by the ATLAS detector at the LHC in 2015–2018 at a centre-of-mass energy of 13 TeV. Dedicated techniques were developed for the reconstruction of displaced jets produced by LLPs decaying hadronically in the ATLAS hadronic calorimeter. Two search regions are defined for different LLP kinematic regimes. The observed numbers of events are consistent with the expected background, and limits for several benchmark signals are determined. For a SM Higgs boson with a mass of 125 GeV, branching ratios above 10% are excluded at 95% confidence level for values of c times LLP mean proper lifetime in the range between 20 mm and 10 m depending on the model. Upper limits are also set on the cross-section times branching ratio for scalars with a mass of 60 GeV and for masses between 200 GeV and 1 TeV. [Figure not available: see fulltext.

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; κλ &lt; 6.9 and −0.5 &lt; κ2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector

    Get PDF
    Abstract A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015–2018) data set of 139 fb −1 collected with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of s s \sqrt{s} = 13 TeV. Scalar leptoquarks with charge −(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e are considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation (e, μ, ν) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recent B-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models
    corecore