11 research outputs found

    Adaptation and development of software simulation methodologies for cardiovascular engineering: present and future challenges from an end-user perspective

    Get PDF
    This paper describes the use of diverse software tools in cardiovascular applications. These tools were primarily developed in the field of engineering and the applications presented push the boundaries of the software to address events related to venous and arterial valve closure, exploration of dynamic boundary conditions or the inclusion of multi-scale boundary conditions from protein to organ levels. The future of cardiovascular research and the challenges that modellers and clinicians face from validation to clinical uptake are discussed from an end-user perspective

    Modelling the hemodynamics of coronary ischemia

    Get PDF
    Acting upon clinical patient data, acquired in the pathway of percutaneous intervention, we deploy hierarchical, multi-stage, data-handling protocols and interacting low- and high-order mathematical models (chamber elastance, state-space system and CFD models), to establish and then validate a framework to quantify the burden of ischaemia. Our core tool is a compartmental, zero-dimensional model of the coupled circulation with four heart chambers, systemic and pulmonary circulations and an optimally adapted windkessel model of the coronary arteries that reflects the diastolic dominance of coronary flow. We guide the parallel development of protocols and models by appealing to foundational physiological principles of cardiac energetics and a parameterisation (stenotic Bernoulli resistance and micro-vascular resistance) of patients’ coronary flow. We validate our process first with results which substantiate our protocols and, second, we demonstrate good correspondence between model operation and patient data. We conclude that our core model is capable of representing (patho)physiological states and discuss how it can potentially be deployed, on clinical data, to provide a quantitative assessment of the impact, on the individual, of coronary artery disease

    Hysteresis Current Control of the Single-Phase Voltage Source Inverter Using eMEGAsim Real-Time Simulator

    No full text
    The paper presents the hysteresis current control of the voltage source inverter. The eMEGAsim real-time simulator is developed by OPAL-RT. Real-time simulation is used in many cases because it allows the behavior of the industrial processes operation to be determined. Two research directions are developed in this case, Rapid Control Prototyping and Hardware-In-the-Loop. Using eMEGAsim simulator allows implementing the command and control strategy of a single-phase voltage source inverter. At this stage, the real-time behavior of operation is monitored, because the voltage source inverter will be the part of a single-phase shunt active filter. In order to command and control the voltage source inverter, the current and voltage signals are acquired, since these signals are necessary to estimate reference signal. Extension of the Instantaneous Reactive Power Theorem is used because this theorem is suitable for single-phase active filter control. To test the real-time command and control strategy implemented, it was used a low power single-phase voltage source inverter (full bridge)

    Reverse Engineering of Some Cardiovascular Devices

    No full text
    An X-Ray microtompgraphic and a laser based method have been used for getting surface scan of some cardiovascular devices. Several stent and mechanical heart valve types have been scanned, highlighting the advantages and disadvantages of each method. The major advantage of X-Ray microtomography is the possibility of evaluating the mass distribution inside the sample, whilst the laser scanning is independent of the density of the sample
    corecore