1,180 research outputs found

    NASA low- and medium-speed airfoil development

    Get PDF
    The status of NASA low and medium speed airfoil research is discussed. Effects of airfoil thickness-chord ratios varying from 9 percent to 21 percent on the section characteristics for a design lift coefficient of 0.40 are presented for the initial low speed family of airfoils. Also, modifications to the 17-percent low-speed airfoil to reduce the pitching-moment coefficient and to the 21-percent low speed airfoil results are shown for two new medium speed airfoils with thickness ratios of 13 percent and 17 percent and design-lift coefficients of 0.30. Applications of NASA-developed airfoils to general aviation aircraft are summarized

    Geometrically nonlinear analysis of adhesively bonded joints

    Get PDF
    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements

    Flying not flapping: a strategic framework for e‐learning and pedagogical innovation in higher education institutions

    Get PDF
    E‐learning is in a rather extraordinary position. It was born as a ‘tool’ and now finds itself in the guise of a somewhat wobbly arrow of change. In practice, changing the way thousands of teachers teach, learners learn, innovation is promoted and sustainable change in traditional institutions is achieved across hundreds of different disciplines is a demanding endeavour that will not be achieved by learning technologies alone. It involves art, craft and science as well as technology. This paper attempts to show how it might be possible to capture and model complex strategic processes that will help move the potential of e‐learning in universities to a new stage of development. It offers the example of a four‐quadrant model created as a framework for an e‐learning strategy

    Far infrared maps of the ridge between OMC-1 and OMC-2

    Get PDF
    Dust continuum emission from a 6 ft x 20 ft region surrounding OMC-1 and OMC-2 were mapped at 55 and 125 microns with 4 ft resolution. The dominant features of the maps are a strong peak at OMC-1 and a ridge of lower surface brightness between OMC-1 and OMC-2. Along the ridge the infrared flux densities and the color temperature decreases smoothly from OMC-1 to OMC-2. OMC-1 is heated primarily by several optical and infrared stars situated within or just at the boundary of the cloud. At the region of minimum column density between OMC-1 and OMC-2 the nearby B0.5 V star NU Ori may contribute significantly to the dust heating. Near OMC-2 dust column densities are large enough so that, in addition to the OMC-2 infrared cluster, the nonlocal infrared sources associated with OMC-1 and NU Ori can contribute to the heating

    Far infrared and submillimeter brightness temperatures of the giant planets

    Get PDF
    The brightness temperatures of Jupiter, Saturn, Uranus, and Neptune in the range 35 to 1000 micron. The effective temperatures derived from the measurements, supplemented by shorter wavelength Voyager data for Jupiter and Saturn, are 126.8 + or - 4.5 K, 93.4 + or - 3.3 K, 58.3 + or - 2.0 K, and 60.3 + or - 2.0 K, respectively. The implications of the measurements for bolometric output and for atmospheric structure and composition are discussed. The temperature spectrum of Jupiter shows a strong peak at approx. 350 microns followed by a deep valley at approx. 450 to 500 microns. Spectra derived from model atmospheres qualitatively reproduced these features but do not fit the data closely

    San Fernando Earthquake Series, 1971: Focal Mechanisms and Tectonics

    Get PDF
    The largest events in the San Fernando earthquake series, initiated by the main shock at 14h 00m 41.8s UT on February 9, 1971, were chosen for analysis from the first three months of activity, 87 events in all. C. R. Allen and his co-workers assigned the main shock parameters: 34°24.7′N, 118°24.0′W, focal depth h = 8.4 km, and local magnitude M_L = 6.4. The initial rupture location coincides with the lower, northernmost edge of the main north-dipping thrust fault and the aftershock distribution. The best focal mechanism fit to the main shock P wave first motions constrains the fault plane parameters to: strike, N67°(±6°)W; dip, 52°(±3°)NE; rake, 72° (67°−95°) left lateral. Focal mechanisms of the aftershocks clearly outline a down step of the western edge of the main thrust fault surface along a northeast-trending flexure. Faulting on this down step is left lateral strike slip and dominates the strain release of the aftershock series, which indicates that the down step limited the main event rupture on the west. The main thrust fault surface dips at about 35° to the northeast at shallow depths and probably steepens to 50° below a depth of 8 km. This steep dip at depth is a characteristic of other thrust faults in the Transverse ranges and indicates the presence at depth of laterally varying vertical forces that are probably due to buckling or overriding that causes some upward redirection of a dominant north-south horizontal compression. Two sets of events exhibit normal dip slip motion with shallow hypocenters and correlate with areas of ground subsidence deduced from gravity data. One set in the northeastern aftershock area is related to shallow extensional stresses caused by the steepening of the main fault plane. The other set is probably caused by a deviation of displacements along the down step of the main fault surface that resulted in localized ground subsidence near the western end of the main fault break. Several lines of evidence indicate that a horizontal compressional stress in a north or north-northwest direction was added to the stresses in the aftershock area 12 days after the main shock. After this change, events were contained in bursts along the down step, and sequencing within the bursts provides evidence for an earthquake-triggering phenomenon that propagates with speeds of 5–15 km/day. Seismicity before the San Fernando series and the mapped structure of the area suggest that the down step of the main fault surface is not a localized discontinuity but is part of a zone of weakness extending from Point Dume, near Malibu, to Palmdale on the San Andreas fault. This zone is interpreted as a decoupling boundary between crustal blocks that permits them to deform separately in the prevalent crustal shortening mode of the Transverse ranges region

    A Method for Upscaling In Situ Soil Moisture Measurements to Satellite Footprint Scale Using Random Forests

    Get PDF
    Geophysical products generated from remotely sensed data require validation to evaluate their accuracy. Typically in situ measurements are used for validation, as is the case for satellite-derived soil moisture products. However, a large disparity in scales often exists between in situ measurements (covering meters to 10 s of meters) and satellite footprints (often hundreds of meters to several kilometers), making direct comparison difficult. Before using in situ measurements for validation, they must be “upscaled” to provide the mean soil moisture within the satellite footprint. There are a number of existing upscaling methods previously applied to soil moisture measurements, but many place strict requirements on the number and spatial distribution of soil moisture sensors difficult to achieve with permanent/semipermanent ground networks necessary for long-term validation efforts. A new method for upscaling is presented here, using Random Forests to fit a model between in situ measurements and a number of landscape parameters and variables impacting the spatial and temporal distributions of soil moisture. The method is specifically intended for validation of the NASA soil moisture active passive (SMAP) products at 36-, 9-, and 3-km scales. The method was applied to in situ data from the SoilSCAPE network in California, validated with data from the SMAPVEX12 campaign in Manitoba, Canada with additional verification from the TxSON network in Texas. For the SMAPVEX12 site, the proposed method was compared to extensive field measurements and was able to predict mean soil moisture over a large area more accurately than other upscaling approaches

    Association between bilirubin and cardiovascular disease risk factors: using Mendelian randomization to assess causal inference

    Get PDF
    Background: Elevated serum bilirubin has been associated with reduced risk of cardiovascular disease (CVD). However, serum bilirubin is also related with several potential confounders related to CVD, such as obesity. Mendelian randomization has been proposed as a method to address challenges to validity from confounding and reverse causality. It utilizes genotype to estimate causal relationships between a gene product and physiological outcomes. In this report, we demonstrate its use in assessing direct causal relations between serum bilirubin levels and CVD risk factors, including obesity, cholesterol, measures of vascular function and blood pressure. Methods: Study subjects included 868 asymptomatic individuals. Study subjects were genotyped at the UGT1A1*28 locus, which is strongly associated with bilirubin levels. Results: Serum bilirubin levels were inversely associated with levels of several cardiovascular disease risk factors, including body mass index (p = 0.003), LDL (p = 0.0005) and total cholesterol (p = 0.0002). In contrast, UGT1A1*28 genotype, a known cause of elevated bilirubin levels, was not significantly associated with any of these traditional CVD risk factors. We did observe an association between genotype and brachial artery diameter (p = 0.003) and cold pressor reactivity (p = 0.01). Conclusions: Our findings imply that the observed association of serum bilirubin levels with body mass index and cholesterol are likely due to confounding and suggest that previously established CVD benefits of increased bilirubin may in part be mediated by the early regulation of vascular structure and reactivity

    Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings

    Full text link
    We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta2O5 and SiO2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate and the mechanical loss angle in the coating is anisotropic. The loss angle in the coatings for strains parallel to the substrate surface was determined from ringdown experiments. We measured the mechanical quality factor of three fused silica samples with coatings deposited on them. The loss angle of the coating material for strains parallel to the coated surface was found to be (4.2 +- 0.3)*10^(-4) for coatings deposited on commercially polished slides and (1.0 +- 0.3)*10^{-4} for a coating deposited on a superpolished disk. Using these numbers, we estimate the effect of coatings on thermal noise in the initial LIGO and advanced LIGO interferometers. We also find that the corresponding prediction for thermal noise in the 40 m LIGO prototype at Caltech is consistent with the noise data. These results are complemented by results for a different type of coating, presented in a companion paper.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to Phys. Lett.
    corecore