6,322 research outputs found

    Effect of casing treatment of overall performance of axial-flow transonic fan stage with pressure ratio of 1.75 and tip solidity of 1.5

    Get PDF
    The effect of a number of casing treatments on the overall performance of a 1.75-pressure-ratio, 423-m/sec-tip-speed fan stage was evaluated. The skewed slot configuration with short-open slots over the midportion of the rotor had a stall margin of 23.5 percent, while the solid casing had a stall margin of 15.0 percent. The skewed slot configuration with long open slots extending ahead of and over portion of rotor displaced the stall line to the lowest flow at all speeds tested. At design speed, the peak efficiency for the long, forward open slots was 1 point less than that for the short midopen slots and 3 points less than that for the solid casing

    Effects of tip clearance on overall performance of transonic fan stage with and without casing treatment

    Get PDF
    The overall performance of a transonic fan stage is presented for various tip clearances, with and without casing treatment. The stage was tested with a solid casing, and with open skewed slots and closed skewed slots in the casing over the rotor blade tips. Four nominal nonrotating rotor blade tip clearances from 0.061 to 0.178 centimeter were used. For all three casings, the pressure ratio and efficiency decreased with increasing tip clearance. The stall margin for a given casing also decreased with increasing clearance. At design speed and a given tip clearance, the highest stall margin was obtained with the open-slot casing, and the lowest stall margin was obtained with the solid casing

    Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy

    Get PDF
    The Department of Materials Science and Engineering (MSE) is investigating the use of monatomic chlorine produced in a cold plasma to recover oxygen and metallurgically significant metals from lunar materials. Development of techniques for the production of the chlorine radical (and other energetic radicals for these processes) using local planetary resources is a key step for a successful approach. It was demonstrated terrestrially that the use of UV light to energize the photogeneration of OH radicals from ozone or hydrogen peroxide in aqueous solutions can lead to rapid reaction rates for the breakdown of toxic organic compounds in water. A key question is how to use the expanded solar resource at the lunar surface to generate process-useful radicals. This project is aimed at investigating that question

    Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy

    Get PDF
    A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed

    Performance of a single-stage transonic compressor with a blade-tip solidity of 1.5 and comparison with 1.3 and 1.7 solidity stages

    Get PDF
    The overall and blade-element performance of a transonic compressor stage with a tip solidity of 1.5 is presented over the stable operating range at rotative speeds from 50 to 100 percent of design speed. State peak efficiency of 0.82 was obtained at a weight flow of 29.4 kg.sec (200.4 (kg/sec)/m2 of annulus area) and a pressure ratio of 1.71. Stall margin at design speed was 14 percent. A comparison of three stages in a solidity study showed that the performance of the 1.5 solidity stage and the 1.3 solidity stage were nearly identical but that the performance of the 1.7 solidity stage was significantly lower

    Aerodynamic performance of a 1.35-pressure-ratio axial-flow fan stage

    Get PDF
    The overall blade element performances and the aerodynamic design parameters are presented for a 1.35-pressure-ratio fan stage. The fan stage was designed for a weight flow of 32.7 kilograms per second and a tip speed of 302.8 meters per second. At design speed the stage peak efficiency of 0.879 occurred at a pressure ratio of 1.329 and design flow. Stage stall margin was approximately 14 percent. At design flow rotor efficiency was 0.94 and the pressure ratio was 1.360

    Performance of a transonic fan stage designed for a low meridional velocity ratio

    Get PDF
    The aerodynamic performance and design parameters of a transonic fan stage are presented. The fan stage was designed for a meridional velocity ratio of 0.8 across the tip of the stage, a pressure ratio of 1.57, a flow of 29.5 kilograms per second, and a tip speed of 426 meters per second. Radial surveys were obtained over the stable operating range from 50 to 100 percent of design speed. The measured, peak efficiency (0.81) of the stage occurred at a pressure ratio of 1.58 and a flow of 28.7 kilograms per second
    corecore