3,031 research outputs found

    A cortical potential reflecting cardiac function

    Get PDF
    Emotional trauma and psychological stress can precipitate cardiac arrhythmia and sudden death through arrhythmogenic effects of efferent sympathetic drive. Patients with preexisting heart disease are particularly at risk. Moreover, generation of proarrhythmic activity patterns within cerebral autonomic centers may be amplified by afferent feedback from a dysfunctional myocardium. An electrocortical potential reflecting afferent cardiac information has been described, reflecting individual differences in interoceptive sensitivity (awareness of one's own heartbeats). To inform our understanding of mechanisms underlying arrhythmogenesis, we extended this approach, identifying electrocortical potentials corresponding to the cortical expression of afferent information about the integrity of myocardial function during stress. We measured changes in cardiac response simultaneously with electroencephalography in patients with established ventricular dysfunction. Experimentally induced mental stress enhanced cardiovascular indices of sympathetic activity (systolic blood pressure, heart rate, ventricular ejection fraction, and skin conductance) across all patients. However, the functional response of the myocardium varied; some patients increased, whereas others decreased, cardiac output during stress. Across patients, heartbeat-evoked potential amplitude at left temporal and lateral frontal electrode locations correlated with stress-induced changes in cardiac output, consistent with an afferent cortical representation of myocardial function during stress. Moreover, the amplitude of the heartbeat-evoked potential in the left temporal region reflected the proarrhythmic status of the heart (inhomogeneity of left ventricular repolarization). These observations delineate a cortical representation of cardiac function predictive of proarrhythmic abnormalities in cardiac repolarization. Our findings highlight the dynamic interaction of heart and brain in stress-induced cardiovascular morbidity

    The Reionization of Carbon

    Full text link
    Observations suggest that CII was more abundant than CIV in the intergalactic medium towards the end of the hydrogen reionization epoch. This transition provides a unique opportunity to study the enrichment history of intergalactic gas and the growth of the ionizing background (UVB) at early times. We study how carbon absorption evolves from z=10-5 using a cosmological hydrodynamic simulation that includes a self-consistent multifrequency UVB as well as a well-constrained model for galactic outflows to disperse metals. Our predicted UVB is within 2-4 times that of Haardt & Madau (2012), which is fair agreement given the uncertainties. Nonetheless, we use a calibration in post-processing to account for Lyman-alpha forest measurements while preserving the predicted spectral slope and inhomogeneity. The UVB fluctuates spatially in such a way that it always exceeds the volume average in regions where metals are found. This implies both that a spatially-uniform UVB is a poor approximation and that metal absorption is not sensitive to the epoch when HII regions overlap globally even at column densites of 10^{12} cm^{-2}. We find, consistent with observations, that the CII mass fraction drops to low redshift while CIV rises owing the combined effects of a growing UVB and continued addition of carbon in low-density regions. This is mimicked in absorption statistics, which broadly agree with observations at z=6-3 while predicting that the absorber column density distributions rise steeply to the lowest observable columns. Our model reproduces the large observed scatter in the number of low-ionization absorbers per sightline, implying that the scatter does not indicate a partially-neutral Universe at z=6.Comment: 16 pages, 14 figures, accepted to MNRA

    Direct Detection of Galactic Halo Dark Matter

    Get PDF
    The Milky Way Galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this ``dark matter'' may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the Galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the Galaxy's spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2% of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of Galactic halo dark matter.Comment: 13 pages, 4 figures, 1 table. Note added after Science Express online publication: This text reflects the correction of a few typographical errors in the online version of the table. It also includes the new constraint on the calculation of d_max which accounts for the fact that the survey could not have detected stars with proper motions below 0.33 arcseconds per year. Published online at ScienceExpress www.sciencemag.org 22 March 2001; 10.1126/science.1059954; To appear in Science 27 April 200

    Cool White Dwarfs Revisited -- New Spectroscopy and Photometry

    Get PDF
    In this paper we present new and improved data on 38 cool white dwarfs identified by Oppenheimer et al. 2001 (OHDHS) as candidate dark halo objects. Using the high-res spectra obtained with LRIS, we measure radial velocities for 13 WDs that show an H alpha line. We show that the knowledge of RVs decreases the UV-plane velocities by only 6%. The radial velocity sample has a W-velocity dispersion of sig_W = 59 km/s--in between the values associated with the thick disk and the stellar halo. We also see indications for the presence of two populations by analyzing the velocities in the UV plane. In addition, we present CCD photometry for half of the sample, and with it recalibrate the photographic photometry of the remaining WDs. Using the new photometry in standard bands, and by applying the appropriate color-magnitude relations for H and He atmospheres, we obtain new distance estimates. New distances of the WDs that were not originally selected as halo candidates yield 13 new candidates. On average, new distances produce velocities in the UV plane that are larger by 10%, with already fast objects gaining more. Using the new data, while applying the same UV-velocity cut (94 km/s) as in OHDHS, we find a density of cool WDs of 1.7e-4 pc^-3, confirming the value of OHDHS. In addition, we derive the density as a function of the UV-velocity cutoff. The density (corrected for losses due to higher UV cuts) starts to flatten out at 150 km/s (0.4e-4 pc^-3), and is minimized (thus minimizing a possible non-halo contamination) at 190 km/s (0.3e-4 pc^-3). These densities are in a rough agreement with the estimates for the stellar halo WDs, corresponding to a factor of 1.9 and 1.4 higher values.Comment: Accepted to ApJ. New version contains some additional data. Results unchange

    The Flux Auto- and Cross-Correlation of the Lyman-alpha Forest. II. Modelling Anisotropies with Cosmological Hydrodynamic Simulations

    Full text link
    The isotropy of the Lyman-alpha forest in real-space uniquely provides a measurement of cosmic geometry at z > 2. The angular diameter distance for which the correlation function along the line of sight and in the transverse direction agree corresponds to the correct cosmological model. However, the Lyman-alpha forest is observed in redshift-space where distortions due to Hubble expansion, bulk flows, and thermal broadening introduce anisotropy. Similarly, a spectrograph's line spread function affects the autocorrelation and cross-correlation differently. In this the second paper of a series on using the Lyman-alpha forest observed in pairs of QSOs for a new application of the Alcock-Paczynski (AP) test, these anisotropies and related sources of potential systematic error are investigated with cosmological hydrodynamic simulations. Three prescriptions for galactic outflow were compared and found to have only a marginal effect on the Lyman-alpha flux correlation (which changed by at most 7% with use of the currently favored variable-momentum wind model vs. no winds at all). An approximate solution for obtaining the zero-lag cross-correlation corresponding to arbitrary spectral resolution directly from the zero-lag cross-correlation computed at full-resolution (good to within 2% at the scales of interest) is presented. Uncertainty in the observationally determined mean flux decrement of the Lyman-alpha forest was found to be the dominant source of systematic error; however, this is reduced significantly when considering correlation ratios. We describe a simple scheme for implementing our results, while mitigating systematic errors, in the context of a future application of the AP test.Comment: 20 page

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    The Simulated HI Sky at low redshift

    Get PDF
    Observations of intergalactic neutral hydrogen can provide a wealth of information about structure and galaxy formation, potentially tracing accretion and feedback processes on Mpc scales. Below a column density of NHI ~ 10^19 cm-2, the "edge" or typical observational limit for HI emission from galaxies, simulations predict a cosmic web of extended emission and filamentary structures. We study the distribution of neutral hydrogen and its 21cm emission properties in a cosmological hydrodynamic simulation, to gain more insights into the distribution of HI below NHI ~ 10^19 cm-2. Such Lyman Limit systems are expected to trace out the cosmic web, and are relatively unexplored. Beginning with a 32 h^-1 Mpc simulation, we extract the neutral hydrogen component by determining the neutral fraction, including a post-processed correction for self-shielding based on the thermal pressure. We take into account molecular hydrogen, assuming an average density ratio Omega_H2 / Omega_HI = 0.3 at z = 0. The statistical properties of the HI emission are compared with observations, to assess the reliability of the simulation. The simulated HI distribution robustly describes the full column density range between NHI ~ 10^14 and NHI ~ 10^21 cm-2 and agrees very well with available measurements from observations. Furthermore there is good correspondence in the statistics when looking at the two-point correlation function and the HI mass function. The reconstructed maps are used to simulate observations of existing and future telescopes by adding noise and taking account of the sensitivity of the telescopes. The general agreement in statistical properties of HI suggests that neutral hydrogen as modeled in this hydrodynamic simulation is a fair representation of that in the Universe. (abridged)Comment: 20 pages, 17 figures, Accepted for publication in A&A, figures compressed to low resolution; high-resolution version available at: http://www.astro.rug.nl/~popping/simulated_HI_sky.pd

    Atmospheric, Evolutionary, and Spectral Models of the Brown Dwarf Gliese 229 B

    Get PDF
    Theoretical spectra and evolutionary models that span the giant planet--brown dwarf continuum have been computed based on the recent discovery of the brown dwarf, Gliese 229 B. A flux enhancement in the 4--5 micron window is a universal feature from Jovian planets to brown dwarfs. We confirm the existence of methane and water in Gl 229 B's spectrum and find its mass to be 30 to 55 Jovian masses. Although these calculations focus on Gliese 229 B, they are also meant to guide future searches for extra-solar giant planets and brown dwarfs.Comment: 8 pages, plain TeX, plus four postscript figures, gzipped and uuencoded, accepted for Scienc
    • 

    corecore