38,176 research outputs found

    Magnetic Field Satellite (Magsat) data processing system specifications

    Get PDF
    The software specifications for the MAGSAT data processing system (MDPS) are presented. The MDPS is divided functionally into preprocessing of primary input data, data management, chronicle processing, and postprocessing. Data organization and validity, and checks of spacecraft and instrumentation are dicussed. Output products of the MDPS, including various plots and data tapes, are described. Formats for important tapes are presented. Dicussions and mathematical formulations for coordinate transformations and field model coefficients are included

    Flavor changing neutral currents in 331 models

    Get PDF
    We carry out a general analysis of tree level flavor changing neutral currents in the context of 331 models, considering arbitrary quark and gauge boson mixing matrices. The results are applied to definite textures of quark mass matrices, and differences between various 331 scenarios are pointed out.Comment: 11 pages, no figures. Sec. IV enlarged, 1 reference adde

    Hydration and mobility of HO-(aq)

    Get PDF
    The hydroxide anion plays an essential role in many chemical and biochemical reactions. But a molecular-scale description of its hydration state, and hence also its transport, in water is currently controversial. The statistical mechanical quasi-chemical theory of solutions suggests that HO[H2O]3- is the predominant species in the aqueous phase under standard conditions. This result is in close agreement with recent spectroscopic studies on hydroxide water clusters, and with the available thermodynamic hydration free energies. In contrast, a recent ab initio molecular dynamics simulation has suggested that HO[H_2O]4- is the only dominant aqueous solution species. We apply adiabatic ab initio molecular dynamics simulations, and find good agreement with both the quasi-chemical theoretical predictions and experimental results. The present results suggest a picture that is simpler, more traditional, but with additional subtlety. These coordination structures are labile but the tri-coordinate species is the prominent case. This conclusion is unaltered with changes in the electronic density functional. No evidence is found for rate-determining activated inter-conversion of a HO[H2O]4- trap structure to HO[H2O]3-, mediating hydroxide transport. The view of HO- diffusion as the hopping of a proton hole has substantial validity, the rate depending largely on the dynamic disorder of the water hydrogen-bond network.Comment: 7 pages, 5 figures, additional results include

    Coarsening in potential and nonpotential models of oblique stripe patterns

    Full text link
    We study the coarsening of two-dimensional oblique stripe patterns by numerically solving potential and nonpotential anisotropic Swift-Hohenberg equations. Close to onset, all models exhibit isotropic coarsening with a single characteristic length scale growing in time as t1/2t^{1/2}. Further from onset, the characteristic lengths along the preferred directions x^\hat{x} and y^\hat{y} grow with different exponents, close to 1/3 and 1/2, respectively. In this regime, one-dimensional dynamical scaling relations hold. We draw an analogy between this problem and Model A in a stationary, modulated external field. For deep quenches, nonpotential effects produce a complicated dislocation dynamics that can lead to either arrested or faster-than-power-law growth, depending on the model considered. In the arrested case, small isolated domains shrink down to a finite size and fail to disappear. A comparison with available experimental results of electroconvection in nematics is presented.Comment: 13 pages, 13 figures. To appear in Phys. Rev.

    Black Hole Formation and Classicalization in Ultra-Planckian 2 -> N Scattering

    Get PDF
    We establish a connection between the ultra-Planckian scattering amplitudes in field and string theory and unitarization by black hole formation in these scattering processes. Using as a guideline an explicit microscopic theory in which the black hole represents a bound-state of many soft gravitons at the quantum critical point, we were able to identify and compute a set of perturbative amplitudes relevant for black hole formation. These are the tree-level N-graviton scattering S-matrix elements in a kinematical regime (called classicalization limit) where the two incoming ultra-Planckian gravitons produce a large number N of soft gravitons. We compute these amplitudes by using the Kawai-Lewellen-Tye relations, as well as scattering equations and string theory techniques. We discover that this limit reveals the key features of the microscopic corpuscular black hole N-portrait. In particular, the perturbative suppression factor of a N-graviton final state, derived from the amplitude, matches the non-perturbative black hole entropy when N reaches the quantum criticality value, whereas final states with different value of N are either suppressed or excluded by non-perturbative corpuscular physics. Thus we identify the microscopic reason behind the black hole dominance over other final states including non-black hole classical object. In the parameterization of the classicalization limit the scattering equations can be solved exactly allowing us to obtain closed expressions for the high-energy limit of the open and closed superstring tree-level scattering amplitudes for a generic number N of external legs. We demonstrate matching and complementarity between the string theory and field theory in different large-s and large-N regimes.Comment: 55 pages, 7 figures, LaTeX; v2: typos removed; final version to appear in Nucl. Phys.
    • …
    corecore