6,466 research outputs found
Randomized Algorithms for the Loop Cutset Problem
We show how to find a minimum weight loop cutset in a Bayesian network with
high probability. Finding such a loop cutset is the first step in the method of
conditioning for inference. Our randomized algorithm for finding a loop cutset
outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least
1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is
the minimal size of a minimum weight loop cutset, and n is the number of
vertices. We also show empirically that a variant of this algorithm often finds
a loop cutset that is closer to the minimum weight loop cutset than the ones
found by the best deterministic algorithms known
Flash of photons from the early stage of heavy-ion collisions
The dynamics of partonic cascades may be an important aspect for particle
production in relativistic collisions of nuclei at CERN SPS and BNL RHIC
energies. Within the Parton-Cascade Model, we estimate the production of single
photons from such cascades due to scattering of quarks and gluons q g -> q
gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from
electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter
QED branching process plays the dominant role for photon production, similarly
as the QCD branchings q -> q g and g -> g g play a crucial role for parton
multiplication. We conclude therefore that photons accompanying the parton
cascade evolution during the early stage of heavy-ion collisions shed light on
the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure
Closed classes of functions, generalized constraints and clusters
Classes of functions of several variables on arbitrary non-empty domains that
are closed under permutation of variables and addition of dummy variables are
characterized in terms of generalized constraints, and hereby Hellerstein's
Galois theory of functions and generalized constraints is extended to infinite
domains. Furthermore, classes of operations on arbitrary non-empty domains that
are closed under permutation of variables, addition of dummy variables and
composition are characterized in terms of clusters, and a Galois connection is
established between operations and clusters.Comment: 21 page
Secondary phi meson peak as an indicator of QCD phase transition in ultrarelativistic heavy ion collisions
In a previous paper, we have shown that a double phi peak structure appears
in the dilepton invariant mass spectrum if a first order QCD phase transition
occurs in ultrarelativistic heavy ion collisions. Furthermore, the transition
temperature can be determined from the transverse momentum distribution of the
low mass phi peak. In this work, we extend the study to the case that a smooth
crossover occurs in the quark-gluon plasma to the hadronic matter transition.
We find that the double phi peak structure still exists in the dilepton
spectrum and thus remains a viable signal for the formation of the quark-gluon
plasma in ultrarelativistic heavy ion collisions.Comment: 8 pages, 9 uuencoded postscript figures included, Latex, LBL-3572
CP Asymmetry in B_d --> phi K_S: Standard Model Pollution
The difference in the time dependent CP asymmetries between the modes and is a clean signal for physics beyond the Standard
Model. This interpretation could fail if there is a large enhancement of the
matrix element of the operator between the initial state
and the final state. We argue against this possibility and propose
some experimental tests that could shed light on the situation.Comment: 9 pages, Revte
Effect of baryon density on parton production, chemical equilibration and thermal photon emission from quark gluon plasma
The effect of baryon density on parton production processes of
and is studied
using full phase space distribution function and also with inclusion of quantum
statistics i.e. Pauli blocking and Bose enhancement factors, in the case of
both saturated and unsaturated quark gluon plasma. The rate for the process is found to be much less as compared to the most
commonly used factorized result obtained on the basis of classical
approximation. This discrepancy, which is found both at zero as well as at
finite baryon densities, however, is not due to the lack of quantum statistics
in the classical approximation, rather due to the use of Fermi-Dirac and
Bose-Einstein distribution functions for partons instead of Boltzmann
distribution which is appropriate under such approximation. Interestingly, the
rates of parton production are found to be insensitive to the baryo-chemical
potential particularly when the plasma is unsaturated although the process of
chemical equilibration strongly depends on it. The thermal photon yields, have
been calculated specifically from unsaturated plasma at finite baryon density.
The exact results obtained numerically are found to be in close agreement with
the analytic expression derived using factorized distribution functions
appropriate for unsaturated plasma. Further, it is shown that in the case of
unsaturated plasma, the thermal photon production is enhanced with increasing
baryon density both at fixed temperature and fixed energy density of the quark
gluon plasma.Comment: Latex, 24 pages, 6 postscript figures. Submitted to Phys. Rev.
Soft Electromagnetic Radiations From Equilibrating Quark-Gluon Plasma
We evaluate the bremsstrahlung production of low mass dileptons and soft
photons from equilibrating and transversely expanding quark gluon plasma which
may be created in the wake of relativistic heavy ion collisions. We use initial
conditions obtained from the self screened parton cascade model. We consider a
boost invariant longitudinal and cylindrically symmetric transverse expansion
of the parton plasma and find that for low mass dileptons ( GeV)
and soft photons ( GeV), the bremsstrahlung contribution is
rather large compared to annihilation process at both RHIC and LHC energies. We
also find an increase by a factor of 15-20 in the low mass dileptons and soft
photons yield as one goes from RHIC to LHC energies.Comment: 8 pages, including 7 figures To appear in Phys. Rev.
Adding Salt to an Aqueous Solution of t-Butanol: Is Hydrophobic Association Enhanced or Reduced?
Recent neutron scattering experiments on aqueous salt solutions of
amphiphilic t-butanol by Bowron and Finney [Phys. Rev. Lett. {\bf 89}, 215508
(2002); J. Chem. Phys. {\bf 118}, 8357 (2003)] suggest the formation of
t-butanol pairs, bridged by a chloride ion via
hydrogen-bonds, and leading to a reduced number of intermolecular hydrophobic
butanol-butanol contacts. Here we present a joint experimental/theoretical
study on the same system, using a combination of molecular dynamics simulations
and nuclear magnetic relaxation measurements. Both theory and experiment
clearly support the more intuitive scenario of an enhanced number of
hydrophobic contacts in the presence of the salt, as it would be expected for
purely hydrophobic solutes [J. Phys. Chem. B {\bf 107}, 612 (2003)]. Although
our conclusions arrive at a structurally completely distinct scenario, the
molecular dynamics simulation results are within the experimental errorbars of
the Bowron and Finney work.Comment: 15 pages twocolumn revtex, 11 figure
Abrupt changes in alpha decay systematics as a manifestation of collective nuclear modes
An abrupt change in decay systematics around the N=126 neutron shell
closure is discussed. It is explained as a sudden hindrance of the clustering
of the nucleons that eventually form the particle. This is because the
clustering induced by the pairing mode acting upon the four nucleons is
inhibited if the configuration space does not allow a proper manifestation of
the pairing collectivity.Comment: 6 pages, 3 figures, submitted to Phys. Rev. C, a few new references
adde
- âŠ