388 research outputs found

    Cryogenic metallic positive expulsion bellows evaluation

    Get PDF
    Cryogenic metallic positive expulsion bellows evaluatio

    High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures

    Get PDF
    We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large

    Short Communication: The potential of portable near infrared spectroscopy for assuring quality and authenticity in the food chain, using Iberian hams as an example

    Get PDF
    This communication assesses the use of a portable near infrared (NIR) instrument to measure quantitative (fatty acid profile) properties and qualitative (‘Premium’ and ‘Non-premium’) categories of individual Iberian pork carcasses at the slaughterhouse. Acorn-fed Iberian pigs have more unsaturated fats than pigs fed conventional compound feed. Recent advances in miniaturisation have led to a number of handheld NIR devices being developed, allowing processing decisions to be made earlier, significantly reducing time and costs. The most common methods used for assessing quality and authenticity of Iberian hams are analysis of the fatty acid composition of subcutaneous fat using gas chromatography and DNA analysis. In this study, NIR calibrations for fatty acids and classification as premium or non-premium ham, based on carcass fat measured in situ, were developed using a portable NIR spectrometer. The accuracy of the quantitative equations was evaluated through the standard error of cross validation or standard error of prediction of 0.84 for palmitic acid (C16:0), 0.94 for stearic acid (C18:0), 1.47 for oleic acid (C18:1) and 0.58 for linoleic acid (C18:2). Qualitative calibrations provided acceptable results, with up to 98% of samples (n = 234) correctly classified with probabilities ⩾0.9. Results indicated a portable NIR instrument has the potential to be used to measure quality and authenticity of Iberian pork carcasses

    Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory

    Get PDF
    We present an investigation of structural changes in silicon-rich silicon oxide metal-insulator-metal resistive RAM devices. The observed unipolar switching, which is intrinsic to the bulk oxide material and does not involve movement of metal ions, correlates with changes in the structure of the oxide. We use atomic force microscopy, conductive atomic force microscopy, x-ray photoelectron spectroscopy, and secondary ion mass spectroscopy to examine the structural changes occurring as a result of switching. We confirm that protrusions formed at the surface of samples during switching are bubbles, which are likely to be related to the outdiffusion of oxygen. This supports existing models for valence-change based resistive switching in oxides. In addition, we describe parallel linear and nonlinear conduction pathways and suggest that the conductance quantum, G0, is a natural boundary between the high and low resistance states of our devices

    Can Light Signals Travel Faster than c in Nontrivial Vacuua in Flat space-time? Relativistic Causality II

    Full text link
    In this paper we show that the Scharnhorst effect (Vacuum with boundaries or a Casimir type vacuum) cannot be used to generate signals showing measurable faster-than-c speeds. Furthermore, we aim to show that the Scharnhorst effect would violate special relativity, by allowing for a variable speed of light in vacuum, unless one can specify a small invariant length scale. This invariant length scale would be agreed upon by all inertial observers. We hypothesize the approximate scale of the invariant length.Comment: 12 pages no figure

    Entanglement and visibility at the output of a Mach-Zehnder interferometer

    Get PDF
    We study the entanglement between the two beams exiting a Mach-Zehnder interferometer fed by a couple of squeezed-coherent states with arbitrary squeezing parameter. The quantum correlations at the output are function of the internal phase-shift of the interferometer, with the output state ranging from a totally disentangled state to a state whose degree of entanglement is an increasing function of the input squeezing parameter. A couple of squeezed vacuum at the input leads to maximum entangled state at the output. The fringes visibilities resulting from measuring the coincidence counting rate or the squared difference photocurrent are evaluated and compared each other. Homodyne-like detection turns out to be preferable in almost all situations, with the exception of the very low signals regime.Comment: 6 figs, accepted for publication on PRA, see also http://enterprise.pv.infn.it/~pari

    Thermalized Displaced Squeezed Thermal States

    Get PDF
    In the coordinate representation of thermofield dynamics, we investigate the thermalized displaced squeezed thermal state which involves two temperatures successively. We give the wavefunction and the matrix element of the density operator at any time, and accordingly calculate some quantities related to the position, momentum and particle number operator, special cases of which are consistent with the results in the literature. The two temperatures have diffenent correlations with the squeeze and coherence components. Moreover, different from the properties of the position and momentum, the average value and variance of the particle number operator as well as the second-order correlation function are time-independent.Comment: 7 pages, no figures, Revtex fil

    Quantum state transformation by dispersive and absorbing four-port devices

    Full text link
    The recently derived input-output relations for the radiation field at a dispersive and absorbing four-port device [T. Gruner and D.-G. Welsch, Phys. Rev. A 54, 1661 (1996)] are used to derive the unitary transformation that relates the output quantum state to the input quantum state, including radiation and matter and without placing frequency restrictions. It is shown that for each frequency the transformation can be regarded as a well-behaved SU(4) group transformation that can be decomposed into a product of U(2) and SU(2) group transformations. Each of them may be thought of as being realized by a particular lossless four-port device. If for narrow-bandwidth radiation far from the medium resonances the absorption matrix of the four-port device can be disregarded, the well-known SU(2) group transformation for a lossless device is recognized. Explicit formulas for the transformation of Fock-states and coherent states are given.Comment: 24 pages, RevTe

    A Fully Quantum Mechanical Model of a SQUID Ring Coupled to an Electromagnetic Field

    Get PDF
    A quantum system comprising of a monochromatic electromagnetic field coupled to a SQUID ring with sinusoidal non-linearity, is studied. A magnetostatic flux Φx\Phi_{x} is also threading the SQUID ring, and is used to control the coupling between the two systems. It is shown that for special values of Φx\Phi_{x} the system is strongly coupled. The time evolution of the system is studied. It is shown that exchange of energy takes place between the two modes and that the system becomes entangled. A second quasi-classical model that treats the electromagnetic field classically is also studied. A comparison between the fully quantum mechanical model with the electromagnetic field initially in a coherent state and the quasi-classical model, is made.Comment: 7 pages, 9 figures. Uploaded as implementing a policy of arXiving old paper
    • …
    corecore