2,943 research outputs found

    Injection-Locked Dye Laser Pumped By A Xenon-lon Laser

    Get PDF
    Injection locking of a dye laser is reported for a 4-minor ring-cavity dye User pumped by a xenon-ion laser. Both a He-Ne laser and tunable CW dye laser were used as the injection sources. Copyright © 1980 by The Institute of Electrical and Electronics Engineers, Inc

    Soil nitrogen affects phosphorus recycling: foliar resorption and plant–soil feedbacks in a northern hardwood forest

    Get PDF
    Previous studies have attempted to link foliar resorption of nitrogen and phosphorus to their respective availabilities in soil, with mixed results. Based on resource optimization theory, we hypothesized that the foliar resorption of one element could be driven by the availability of another element. We tested various measures of soil N and P as predictors of N and P resorption in six tree species in 18 plots across six stands at the Bartlett Experimental Forest, New Hampshire, USA. Phosphorus resorption efficiency (P , 0.01) and proficiency (P ¼ 0.01) increased with soil N content to 30 cm depth, suggesting that trees conserve P based on the availability of soil N. Phosphorus resorption also increased with soil P content, which is difficult to explain based on single-element limitation, but follows from the correlation between soil N and soil P. The expected single-element relationships were evident only in the O horizon: P resorption was high where resin-available P was low in the Oe (P , 0.01 for efficiency, P , 0.001 for proficiency) and N resorption was high where potential N mineralization in the Oa was low (P , 0.01 for efficiency and 0.11 for proficiency). Since leaf litter is a principal source of N and P to the O horizon, low nutrient availability there could be a result rather than a cause of high resorption. The striking effect of soil N content on foliar P resorption is the first evidence of multiple-element control on nutrient resorption to be reported from an unmanipulated ecosystem

    GEOSPATIAL MODELING OF ROADSIDE VEGETATION RISK ON DISTRIBUTION POWER LINES IN CONNECTICUT

    Get PDF
    Roadside trees cause almost 90% of the power outages in the forested Northeastern US. Management of roadside vegetation risk on electrical infrastructure demands timely and accurate information on forest conditions. Tasking conventional ground-based scouting methods along thousands of kilometers of powerlines in a repeated fashion are labor-/cost-/time-intense. Geospatial and earth observation (EO) technologies serve as cost-effective tools in monitoring, inspecting, and managing utility corridors. EO technologies, from drones, aircraft, to satellites can efficiently acquire information over large areas at regular intervals while probing forest physical structure and health conditions. LiDAR is a useful data stream for modeling terrain conditions and estimation of multiple forest inventory variables that explain the physical structure of the forest. Various EO imagery provides information on bio-physical characteristics of trees that affect forest health at finer granularity. The goal of this study is to combine multiple environmental variables to develop a spatially-explicit vegetation risk model using machine learning algorithms. Some of the key inputs used in our analysis include LiDAR-derived tree-related variables (e.g., tree height, proximity pixels, canopy cover), LiDAR-derived terrain data (slope, aspect, topographic index), soil characteristics, vegetation management data (tree trimming methods), infrastructure data (wire type), and power outages reported from 2005 to 2017 in Connecticut. Findings of this research will be vital in informing vegetation management decision-making processes, which eventually reduce power outages and the cost of utility corridor maintenance

    In-situ measurements of total reactive nitrogen, total water vapor, and aerosols in polar stratospheric clouds in the Antarctic stratosphere

    Get PDF
    Measurements of total reactive nitrogen, NOy, total water vapor, and aerosols were made as part of the Airborne Antarctic Ozone Experiment. The measurements were made using instruments located onboard the NASA ER-2 aircrafts which conducted twelve flights over the Antarctic continent reaching altitudes of 18 km at 72 S latitude. Each instrument utilized an ambient air sample and provided a measurement up to 1 Hz or every 200 m of flight path. The data presented focus on the flights of Aug. 17th and 18th during which Polar Stratospheric Clouds (PSCs) were encountered containing concentrations of 0.5 to 1.0 micron diameter aerosols greater than 1 cm/cu. The temperature pressure during these events ranged as low as 184 K near 75 mb pressure, with water values near 3.5 ppm by volume (ppmv). With the exception of two short periods, the PSC activity was observed at temperatures above the frost point of water over ice. The data gathered during these flights are analyzed and presented

    Recovery from disturbance requires resynchronization of ecosystem nutrient cycles

    Get PDF
    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance

    Extinction and backscatter measurements of Antarctic PSC's, 1987: Implications for particle and vapor removal

    Get PDF
    The temperature dependence is examined of optical properties measured in the Antarctic during 1987 at the 70 mb level (near 18 km), a level chosen to correlate the results with in situ measurements made from the NASA-Ames ER-2 aircraft during the 1987 Airborne Antarctic Ozone Experiment (AAOE). The data set consists of extinction measurements by Sam 2 inside the Antarctic polar vortex from May to October 1987; and backscatter measurements by the UV-DIAL (Ultraviolet Differential Absorption Lidar) system aboard the Ames DC-8 aircraft during selected AAOE flights. Observed trends are compared with results from a revised version of Pole and McCormick's model to classify the PSC observations by Type (1 or 2) and infer the temporal behavior of the ambient aerosol and ambient vapor mixing ratios. The sample figures show monthly ensembles of the 70-mb Sam 2 extinction ratio (the ratio of aerosol or PSC extinction to molecule extinction) as a function of NMC temperature at the beginning (June) and (October) of the 1987 Antarctic winter. Both ensembles show two rather distinct clusters of points: one oriented in the near vertical direction which depicts the change with temperature of the ambient aerosol extinction ratio; and a second cluster oriented in the near horizontal direction whose position on the vertical scale marks a change in particle phase (i.e., PSC formation) and whose length (the extinction enhancement related to that of the ambient aerosol) is an indicator of PSC type

    Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole

    Get PDF
    During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident

    Electroweak Physics, Experimental Aspects

    Full text link
    Collider measurements on electroweak physics are summarised. Although the precision on some observables is very high, no deviation from the Standard Model of electroweak interactions is observed. The data allow to set stringent limits on some models for new physics.Comment: Plenary Talk at the UK Phenomenology Workshop on Collider Physics, Durham, 199

    Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance

    Get PDF
    Chilled mirror hygrometers (CMH) are widely used to measure water vapour in the troposphere and lower stratosphere from balloon-borne sondes. Systematic discrepancies among in situ water vapour instruments have been observed at low water vapour mixing ratios (<5 ppm) in the upper troposphere and lower stratosphere (UT/LS). Understanding the source of the measurement discrepancies is important for a more accurate and reliable determination of water vapour abundance in this region. We have conducted a laboratory study to investigate the potential interference of gas-phase nitric acid (HNO<sub>3</sub>) with the measurement of frost point temperature, and consequently the water vapour mixing ratio, determined by CMH under conditions representative of operation in the UT/LS. No detectable interference in the measured frost point temperature was found for HNO<sub>3</sub> mixing ratios of up to 4 ppb for exposure times up to 150 min. HNO<sub>3</sub> was observed to co-condense on the mirror frost, with the adsorbed mass increasing linearly with time at constant exposure levels. Over the duration of a typical balloon sonde ascent (90–120 min), the maximum accumulated HNO<sub>3</sub> amounts were comparable to monolayer coverage of the geometric mirror surface area, which corresponds to only a small fraction of the actual frost layer surface area. This small amount of co-condensed HNO<sub>3</sub> is consistent with the observed lack of HNO<sub>3</sub> interference in the frost point measurement because the CMH utilizes significant reductions (>10%) in surface reflectivity by the condensate to determine H<sub>2</sub>O
    • …
    corecore