645 research outputs found

    Local order and orientational correlations in liquid and crystalline phases of carbon tetrabromide from neutron powder diffraction measurements

    Get PDF
    The liquid, plastic crystalline and ordered crystalline phases of CBr4_4 were studied using neutron powder diffraction. The measured total scattering differential cross-sections were modelled by Reverse Monte Carlo simulation techniques (RMC++ and RMCPOW). Following successful simulations, the single crystal diffraction pattern of the plastic phase, as well as partial radial distribution functions and orientational correlations for all the three phases have been calculated from the atomic coordinates ('particle configurations'). The single crystal pattern, calculated from a configuration that had been obtained from modelling the powder pattern, shows identical behavior to the recent single crystal data of Folmer et al. (Phys. Rev. {\bf B77}, 144205 (2008)). The BrBr partial radial distribution functions of the liquid and plastic crystalline phases are almost the same, while CC correlations clearly display long range ordering in the latter phase. Orientational correlations also suggest strong similarities between liquid and plastic crystalline phases, whereas the monoclinic phase behaves very differently. Orientations of the molecules are distinct in the ordered phase, whereas in the plastic crystal their distribution seems to be isotropic.Comment: 19 pages, 7 figures, accepted for publication in Physical Review B (http://prb.aps.org/

    Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation

    Get PDF
    Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-Lagrange equations. The examples shown include the comparison of various models of homogeneous crystal nucleation with atomistic simulations for the single component hard-sphere fluid. Extending previous work for pure systems (Gránásy L, Pusztai T, Saylor D and Warren J A 2007 Phys. Rev. Lett. 98 art no 035703), heterogeneous nucleation in unary and binary systems is described via introducing boundary conditions that realize the desired contact angle. A quaternion representation of crystallographic orientation of the individual particles (outlined in Pusztai T, Bortel G and Gránásy L 2005 Europhys. Lett. 71 131) has been applied for modeling a broad variety of polycrystalline structures including crystal sheaves, spherulites and those built of crystals with dendritic, cubic, rhombododecahedral, truncated octahedral growth morphologies. Finally, we present illustrative results for dendritic polycrystalline solidification obtained using an atomistic phase-field model

    Tailoring Fe/Ag Superparamagnetic Composites by Multilayer Deposition

    Full text link
    The magnetic properties of Fe/Ag granular multilayers were examined by SQUID magnetization and Mossbauer spectroscopy measurements. Very thin (0.2 nm) discontinuous Fe layers show superparamagnetic properties that can be tailored by the thickness of both the magnetic and the spacer layers. The role of magnetic interactions was studied in novel heterostructures of superparamagnetic and ferromagnetic layers and the specific contribution of the ferromagnetic layers to the low field magnetic susceptibility was identified.Comment: 5 pages and 3 figure

    Hamiltonian reductions of free particles under polar actions of compact Lie groups

    Full text link
    Classical and quantum Hamiltonian reductions of free geodesic systems of complete Riemannian manifolds are investigated. The reduced systems are described under the assumption that the underlying compact symmetry group acts in a polar manner in the sense that there exist regularly embedded, closed, connected submanifolds meeting all orbits orthogonally in the configuration space. Hyperpolar actions on Lie groups and on symmetric spaces lead to families of integrable systems of spin Calogero-Sutherland type.Comment: 15 pages, minor correction and updated references in v

    Maximum predictive power of the microarray-based models for clinical outcomes is limited by correlation between endpoint and gene expression profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray data have been used for gene signature selection to predict clinical outcomes. Many studies have attempted to identify factors that affect models' performance with only little success. Fine-tuning of model parameters and optimizing each step of the modeling process often results in over-fitting problems without improving performance.</p> <p>Results</p> <p>We propose a quantitative measurement, termed consistency degree, to detect the correlation between disease endpoint and gene expression profile. Different endpoints were shown to have different consistency degrees to gene expression profiles. The validity of this measurement to estimate the consistency was tested with significance at a p-value less than 2.2e-16 for all of the studied endpoints. According to the consistency degree score, overall survival milestone outcome of multiple myeloma was proposed to extend from 730 days to 1561 days, which is more consistent with gene expression profile.</p> <p>Conclusion</p> <p>For various clinical endpoints, the maximum predictive powers of different microarray-based models are limited by the correlation between endpoint and gene expression profile of disease samples as indicated by the consistency degree score. In addition, previous defined clinical outcomes can also be reassessed and refined more coherent according to related disease gene expression profile. Our findings point to an entirely new direction for assessing the microarray-based predictive models and provide important information to gene signature based clinical applications.</p

    A class of Calogero type reductions of free motion on a simple Lie group

    Full text link
    The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G+×G+G_+ \times G_+ symmetry given by left- and right multiplications for a maximal compact subgroup G+GG_+ \subset G are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the `spin' degrees of freedom are absent and we obtain the standard BCnBC_n Sutherland model with three independent coupling constants from SU(n+1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BCnBC_n model with two independent coupling constants from the geodesics on G/G+G/G_+ with G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character of G+G_+. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and corrected some spelling error

    Reverse Monte Carlo modeling of amorphous silicon

    Full text link
    An implementation of the Reverse Monte Carlo algorithm is presented for the study of amorphous tetrahedral semiconductors. By taking into account a number of constraints that describe the tetrahedral bonding geometry along with the radial distribution function, we construct a model of amorphous silicon using the reverse monte carlo technique. Starting from a completely random configuration, we generate a model of amorphous silicon containing 500 atoms closely reproducing the experimental static structure factor and bond angle distribution and in improved agreement with electronic properties. Comparison is made to existing Reverse Monte Carlo models, and the importance of suitable constraints beside experimental data is stressed.Comment: 6 pages, 4 PostScript figure
    corecore