23 research outputs found

    HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE)

    Get PDF
    In order to understand the hydrogeochemical conditions of the basin of Pikrolimni we collected water samples from the borehole in the thermal spa of Pikrolimni and samples of brine and sediments from the lake. We also sampled fresh water of the region. The depth of the borehole in the thermal spa is approximately 250 meters. This water is naturally sparkling, with a metallic aftertaste and a slight organic smell. The samples were taken twice during the year: in summer (8/2002) and in winter (2003). The analytical scheme includes field measurements of temperature, conductivity and pH. Major ions (Na+, K+, Ca2+, Mg2\ CI", Br, S04 2", C03 2", HC03", N03"), F and Br were determined, in laboratory, according to standard analytical methods. Samples were also subjected to isotopie analysis of δ Ο and δ2Η. The results from the chemical analyses of the samples, show that the waters taken from the borehole, are of the type Mg- (Na-Ca)-HCC>3 and the salts of the lake are of the type Na-CI- (CO3-S04). The salts of the lake result from mixing and condensation of the waters which are accumulated in the basin of the lake, and come not only from sources that feed the lake, e.g. waters from borehole, but also from rain water. The waters of these sources are mainly of meteoritic origin and circulate deeply, mixing probably with salt water of deeper and probably of warmer horizons. The latter comes in agreement with the hydrothermal field, which exists in the area. From hydrochemical data, the brines of summer clearly correspond to waters, which have been submitted under high degree of evaporation: they are residual mother solutions before the step of the precipitation of halite. During winter, dilution of brines and dissolution of depositing minerals by fresh water are observed. On the other hand, evaporating conditions are created in the lake during summer

    HYDROGEOCHEMICAL CONDITION OF THE PIKROLIMNI LAKE (KILKIS GREECE)

    Get PDF
    In order to understand the hydrogeochemical conditions of the basin of Pikrolimni we collected water samples from the borehole in the thermal spa of Pikrolimni and samples of brine and sediments from the lake. We also sampled fresh water of the region. The depth of the borehole in the thermal spa is approximately 250 meters. This water is naturally sparkling, with a metallic aftertaste and a slight organic smell. The samples were taken twice during the year: in summer (8/2002) and in winter (2003). The analytical scheme includes field measurements of temperature, conductivity and pH. Major ions (Na+, K+, Ca2+, Mg2\ CI", Br, S04 2", C03 2", HC03", N03"), F and Br were determined, in laboratory, according to standard analytical methods. Samples were also subjected to isotopie analysis of δ Ο and δ2Η. The results from the chemical analyses of the samples, show that the waters taken from the borehole, are of the type Mg- (Na-Ca)-HCC>3 and the salts of the lake are of the type Na-CI- (CO3-S04). The salts of the lake result from mixing and condensation of the waters which are accumulated in the basin of the lake, and come not only from sources that feed the lake, e.g. waters from borehole, but also from rain water. The waters of these sources are mainly of meteoritic origin and circulate deeply, mixing probably with salt water of deeper and probably of warmer horizons. The latter comes in agreement with the hydrothermal field, which exists in the area. From hydrochemical data, the brines of summer clearly correspond to waters, which have been submitted under high degree of evaporation: they are residual mother solutions before the step of the precipitation of halite. During winter, dilution of brines and dissolution of depositing minerals by fresh water are observed. On the other hand, evaporating conditions are created in the lake during summer

    PLEISTOCENE PALAEOCLIMATIC EVOLUTION FROM AGIOS GEORGIOS CAVE SPELEOTHEM (KILKIS, N. GREECE)

    Get PDF
    Palaeoclimatic reconstruction in N. Greece has been investigated in this study, using stable isotope analyses and U/Th dating of a speleothem (stalactite) from the cave of Agios Georgios (Kilkis). Sampling sequence was followed in detail in order to obtain high resolution analysis of the proxy. Speleothem δ18O entirely depends on two factors: changes in the δ18O of the percolation waters (a proxy for local rainfall δ18O) and the temperature of water-calcite fractionation inside the cave (a proxy for outside air temperatures). During periods of relatively stable temperatures, δ13C shifts are caused principally by variations in soil CO2 input and physico-chemical processes inside the cave. More important processes affect the δ13C signal of speleothem inside the cave are length of flow path and rates of CO2 degassing.The lower δ13C calcite values indicate greater respiratory activity of soils under wetter conditions. The stalagmite layers were dated through U/Th geochronological method, which places the carbonate precipitation in Middle Pleistocene (630-300ka BP). The isotopic composition of the layers was used in combination with the dating results to reconstruct the evolution of the area of Kilkis. Correlation with global climatic records shows that major climatic transitions that influenced northern hemisphere seem to have also affected the region of N. Greece

    COMPARISON OF SAMPLING TECHNIQUES FOR ISOTOPIC ANALYSIS OF SHALLOW MARINE CARBONATES

    Get PDF
    Recent studies have widely used beachrock samples for isotopic and dating techniques; however the source matrix of the analyzed samples varied. Bulk rock material, skeletal fragments, allochems and pure cement have been used in different studies. Basic parameters of each technique are crucial for the accuracy and the reliability of the obtained results, affecting each time important agents. This study includes isotopic analyses (δ13C, δ18O) of marine carbonates (beachrocks) from the coasts of N. Greece (Thassos island). The sub-sampling was carried out along beachrock cores, following different procedures and protocols. The obtained results show in general expecting differences in isotopic composition of the samples. Experiments that included heating of the samples show an influence on oxygen isotope. Different separation and selection of sampling material affect majorly the isotope of carbon (13C). Differences are attributed to the origin of the carbonate component of the analyzed material. The study indicates that a full-range of comparison experiments should be implemented in order to define in detail the analytical parameters that affect isotopic measurements. The results of that kind of studies will be used not only in stable isotope analyses but also in a variety of methods used in palaeoclimatic and palaeoenvironmental research

    PLEISTOCENE PALAEOCLIMATIC EVOLUTION FROM AGIOS GEORGIOS CAVE SPELEOTHEM (KILKIS, N. GREECE)

    Get PDF
    Palaeoclimatic reconstruction in N. Greece has been investigated in this study, using stable isotope analyses and U/Th dating of a speleothem (stalactite) from the cave of Agios Georgios (Kilkis). Sampling sequence was followed in detail in order to obtain high resolution analysis of the proxy. Speleothem δ18O entirely depends on two factors: changes in the δ18O of the percolation waters (a proxy for local rainfall δ18O) and the temperature of water-calcite fractionation inside the cave (a proxy for outside air temperatures). During periods of relatively stable temperatures, δ13C shifts are caused principally by variations in soil CO2 input and physico-chemical processes inside the cave. More important processes affect the δ13C signal of speleothem inside the cave are length of flow path and rates of CO2 degassing.The lower δ13C calcite values indicate greater respiratory activity of soils under wetter conditions. The stalagmite layers were dated through U/Th geochronological method, which places the carbonate precipitation in Middle Pleistocene (630-300ka BP). The isotopic composition of the layers was used in combination with the dating results to reconstruct the evolution of the area of Kilkis. Correlation with global climatic records shows that major climatic transitions that influenced northern hemisphere seem to have also affected the region of N. Greece
    corecore