845 research outputs found

    Multipartite entanglement verification resistant against dishonest parties

    Full text link
    Future quantum information networks will likely consist of quantum and classical agents, who have the ability to communicate in a variety of ways with trusted and untrusted parties and securely delegate computational tasks to untrusted large-scale quantum computing servers. Multipartite quantum entanglement is a fundamental resource for such a network and hence it is imperative to study the possibility of verifying a multipartite entanglement source in a way that is efficient and provides strong guarantees even in the presence of multiple dishonest parties. In this work, we show how an agent of a quantum network can perform a distributed verification of a multipartite entangled source with minimal resources, which is, nevertheless, resistant against any number of dishonest parties. Moreover, we provide a tight tradeoff between the level of security and the distance between the state produced by the source and the ideal maximally entangled state. Last, by adding the resource of a trusted common random source, we can further provide security guarantees for all honest parties in the quantum network simultaneously.Comment: The statement of Theorem 2 has been revised and a new proof is given. Other results unchange

    Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computation (Extended Abstract)

    Get PDF
    The efficient certification of classically intractable quantum devices has been a central research question for some time. However, to observe a "quantum advantage", it is believed that one does not need to build a large scale universal quantum computer, a task which has proven extremely challenging. Intermediate quantum models that are easier to implement, but which also exhibit this quantum advantage over classical computers, have been proposed. In this work, we present a certification technique for such a sub-universal quantum server which only performs commuting gates and requires very limited quantum memory. By allowing a verifying client to manipulate single qubits, we exploit properties of measurement based blind quantum computing to give them the tools to test the "quantum superiority" of the server

    Creative learning with serious games [editorial]

    Get PDF
    This paper, summarises the Creative Learning with Serious Games workshop that took place in the Fun and Games 2010 conference. The workshop discussed innovative methodological approaches to Serious Games for creative learning. A special emphasis was given to state-ofthe- art research work and cross-discipline approaches (e.g. the mix of Storytelling and Serious Games). In addition, different case studies coming from very different European (research) projects were presented and discussed with the participants. Five papers were selected via a peer reviewed process to be presented at the workshop. The authors presented their work and demonstrated their applications during the second part of the workshop

    PVD Coatings’ Strength Properties at Various Temperatures by Nanoindentations and FEM Calculations Determined

    Get PDF
    Nanoindentation is usually applied on thin films at ambient temperatures for hardness determination. Recently, instruments for conducting nanoindentation at elevated temperatures have been developed facilitating measurements up to 700 oC. Both indenter and specimen, if necessary, are heated in an inert atmosphere to avoid film oxidations. In the described investigations, nanoindentations were conducted on cemented carbides and high speed steel specimens, coated with various films, up to 400 oC. The obtained results were subjected to statistical analysis to estimate their reliability. Moreover, the results were evaluated by appropriate FEM (Finite Element Method) algorithms for determining the coatings’ elasticity modulus, yield and rupture stress as well as hardness at various temperatures. The results reveal a non-linear temperature dependence of the coating properties

    In-Vacuum Photogrammetry of a 10-Meter Solar Sail

    Get PDF
    In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions

    Transcranial direct current stimulation with functional magnetic resonance imaging: a detailed validation and operational guide [version 1; peer review: 1 approved with reservations]

    Get PDF
    Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate human brain and behavioural function in both research and clinical interventions. The combination of functional magnetic resonance imaging (fMRI) with tDCS enables researchers to directly test causal contributions of stimulated brain regions, answering questions about the physiology and neural mechanisms underlying behaviour. Despite the promise of the technique, advances have been hampered by technical challenges and methodological variability between studies, confounding comparability/replicability. / Methods: Here tDCS-fMRI at 3T was developed for a series of experiments investigating language recovery after stroke. To validate the method, one healthy volunteer completed an fMRI paradigm with three conditions: (i) No-tDCS, (ii) Sham-tDCS, (iii) 2mA Anodal-tDCS. MR data were analysed in SPM12 with region-of-interest (ROI) analyses of the two electrodes and reference sites. / Results: Quality assessment indicated no visible signal dropouts or distortions introduced by the tDCS equipment. After modelling scanner drift, motion-related variance, and temporal autocorrelation, we found no field inhomogeneity in functional sensitivity metrics across conditions in grey matter and in the three ROIs. / Discussion: Key safety factors and risk mitigation strategies that must be taken into consideration when integrating tDCS into an fMRI environment are outlined. To obtain reliable results, we provide practical solutions to technical challenges and complications of the method. It is hoped that sharing these data and SOP will promote methodological replication in future studies, enhancing the quality of tDCS-fMRI application, and improve the reliability of scientific results in this field. / Conclusions: The method and data provided here provide a technically safe, reliable tDCS-fMRI procedure to obtain high quality MR data. The detailed framework of the Standard Operation Procedure SOP (https://doi.org/10.5281/zenodo.4606564) systematically reports the technical and procedural elements of our tDCS-fMRI approach, which we hope can be adopted and prove useful in future studies

    Равновесие и динамика адсорбции паров воды на металлорганическом каркасе MOF-801

    Get PDF
    В работе представлены результаты исследования равновесия и динамики адсорбции паров воды на металлоорганическом каркасе MOF-801 с целью оценки потенциала его применения в системах адсорбционного охлаждения. Показано, что адсорбция воды на MOF-801 характеризуется S-образными изобарами IV типа по классификации ИЮПАК. В условиях типичного рабочего цикла адсорбционного холодильника (АХ) MOF-801 обменивает 0,21 г/г и может быть регенерирован при 80-85°С, что позволяет использовать источники низкотемпературной теплоты (солнечная энергия). Динамика адсорбции на гранулах MOF-801 в условиях рабочего цикла АХ происходит в режиме, при котором скорость процесса определяется отношением S/m площади поверхности теплопереноса S к массе адсорбента m. Эффективность и удельная мощность АХ с использованием пары "MOF-801-вода" достигают 0,67 и 2 кВт/кг соответственно, что представляет большой практический интерес

    UK emissions of the greenhouse gas nitrous oxide

    Get PDF
    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling

    AF-MSCs fate can be regulated by culture conditions

    Get PDF
    Human mesenchymal stem cells (hMSCs) represent a population of multipotent adherent cells able to differentiate into many lineages. In our previous studies, we isolated and expanded fetal MSCs from second-trimester amniotic fluid (AF) and characterized them based on their phenotype, pluripotency and proteomic profile. In the present study, we investigated the plasticity of these cells based on their differentiation, dedifferentiation and transdifferentiation potential in vitro. To this end, adipocyte-like cells (AL cells) derived from AF-MSCs can regain, under certain culture conditions, a more primitive phenotype through the process of dedifferentiation. Dedifferentiated AL cells derived from AF-MSCs (DAF-MSCs), gradually lost the expression of adipogenic markers and obtained similar morphology and differentiation potential to AF-MSCs, together with regaining the pluripotency marker expression. Moreover, a comparative proteomic analysis of AF-MSCs, AL cells and DAF-MSCs revealed 31 differentially expressed proteins among the three cell populations. Proteins, such as vimentin, galectin-1 and prohibitin that have a significant role in stem cell regulatory mechanisms, were expressed in higher levels in AF-MSCs and DAF-MSCs compared with AL cells. We next investigated whether AL cells could transdifferentiate into hepatocyte-like cells (HL cells) directly or through a dedifferentiation step. AL cells were cultured in hepatogenic medium and 4 days later they obtained a phenotype similar to AF-MSCs, and were termed as transdifferentiated AF-MSCs (TRAF-MSCs). This finding, together with the increase in pluripotency marker expression, indicated the adaption of a more primitive phenotype before transdifferentiation. Additionally, we observed that AF-, DAF- and TRAF-MSCs displayed similar clonogenic potential, secretome and proteome profile. Considering the easy access to this fetal cell source, the plasticity of AF-MSCs and their potential to dedifferentiate and transdifferentiate, AF may provide a valuable tool for cell therapy and tissue engineering applications

    Secure certification of mixed quantum states with application to two-party randomness generation

    Get PDF
    We investigate sampling procedures that certify that an arbitrary quantum state on nn subsystems is close to an ideal mixed state φn\varphi^{\otimes n} for a given reference state φ\varphi, up to errors on a few positions. This task makes no sense classically: it would correspond to certifying that a given bitstring was generated according to some desired probability distribution. However, in the quantum case, this is possible if one has access to a prover who can supply a purification of the mixed state. In this work, we introduce the concept of mixed-state certification, and we show that a natural sampling protocol offers secure certification in the presence of a possibly dishonest prover: if the verifier accepts then he can be almost certain that the state in question has been correctly prepared, up to a small number of errors. We then apply this result to two-party quantum coin-tossing. Given that strong coin tossing is impossible, it is natural to ask "how close can we get". This question has been well studied and is nowadays well understood from the perspective of the bias of individual coin tosses. We approach and answer this question from a different---and somewhat orthogonal---perspective, where we do not look at individual coin tosses but at the global entropy instead. We show how two distrusting parties can produce a common high-entropy source, where the entropy is an arbitrarily small fraction below the maximum (except with negligible probability)
    corecore