3,036 research outputs found

    Characterization of nanodimensional Ni-Zn ferrite prepared by mechanochemical and thermal methods.

    Get PDF
    Nickel zinc ferrite nanoparticles, Ni1−xZnxFe2O4 (x = 0, 0.2, 0.5, 0.8, 1.0), with dimensions below 10 nm have been prepared by combining chemical precipitation with high-energy ball milling. For comparison, their analogues obtained by thermal synthesis have also been studied. Mössbauer spectroscopy, X-ray diffraction, and magnetic measurements are used for the characterization of the obtained materials. X-ray diffraction shows that after 3h of mechanical treatment ferrites containing zinc are formed, while 6h of treatment is needed to obtain NiFe2O4. The magnetic properties of the samples exhibit a strong dependence on the phase composition, particle size and preparation method

    Study of initial stage of mechanochemical transformation in pyrite

    Get PDF
    The initial stage of transformation of pyrite to Fe(II)-sulfate as a result of mechanical milling is studied by X-ray powder diffraction (XRD), Moessbauer spectroscopy (MS), Infrared (IR) and X-ray photoelectron spectroscopy (XPS) techniques. A degree of conversion of 0.071 is achieved in the time interval of 0 36 min. The kinetic data satisfy the equation of a shrinking core reaction 1-(1-α)1/3=kt. The reaction is of the first order. The calculated rate constant is k=6.434.10-4 min-1.

    Mössbauer study of nanodimensional nickel ferrite-mechanochemical synthesis and catalytic properties

    Get PDF
    Iron-nickel spinel oxide NiFe2O4 nanoparticles have been prepared by the combination of chemical precipitation and subsequent mechanical milling. For comparison, their analogue obtained by thermal synthesis is also studied. Phase composition and structural properties of iron-nickel oxides are investigated by X-ray diffraction and Mössbauer spectroscopy. Their catalytic behavior in methanol decomposition to CO and methane is tested. An influence of the preparation method on the reduction and catalytic properties of iron-nickel samples is established

    Mössbauer and magnetic study of Co x Fe3−x O4 nanoparticles

    Get PDF
    Magnetic nanoparticles of cobalt ferrites Co x Fe3−x O4 (x = 1 or 2) have been obtained either by mechanical milling or thermal treatment of pre-prepared layered double hydroxide carbonate x-LDH–CO3. Mechanical milling of the 1-LDH–CO3 leads to the large-scale preparation of nearly spherical nanoparticles of CoFe2O4, the size of which (5 to 20 nm) is controlled by the treatment time. Core-shell structure with surface spin-canting has been considered for the nanoparticles formed to explain the observed hysteresis loop shift (from ZFC–FC) in the magnetic properties. Annealing treatment of the 2-LDH–CO3 below 673 K results in the formation of nearly spherical pure Co2FeO4 nanoparticles. At 673 K and above, the LDH decomposition leads to the formation of a mixture of both spinels phases Co2FeO4 and CoFe2O4, the amount of the latter increases with annealing temperature. Unusually high magnetic hardness characterized by a 22 kOe coercive field at 1.8 K has been observed, which reflects the high intrinsic anisotropy for Co2FeO4
    corecore