2,302 research outputs found

    Microscopic modelling of perpendicular electronic transport in doped multiple quantum wells

    Full text link
    We present a microscopic calculation of transport in strongly doped superlattices where domain formation is likely to occur. Our theoretical method is based on a current formula involving the spectral functions of the system, and thus allows, in principle, a systematic investigation of various interaction mechanisms. Taking into account impurity scattering and optical phonons we obtain a good quantitative agreement with existing experimental data from Helgesen and Finstad (J. Appl. Phys. 69, 2689, (1991)). Furthermore the calculated spectral functions indicate a significant increase of the average intersubband spacing compared to the bare level differences which might explain the experimental trend.Comment: 10 pages 5 figure

    Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices

    Full text link
    We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.Comment: Tex file and 3 postscript figure

    Theory of Transmission through disordered superlattices

    Get PDF
    We derive a theory for transmission through disordered finite superlattices in which the interface roughness scattering is treated by disorder averaging. This procedure permits efficient calculation of the transmission thr ough samples with large cross-sections. These calculations can be performed utilizing either the Keldysh or the Landauer-B\"uttiker transmission formalisms, both of which yield identical equations. For energies close to the lowest miniband, we demonstrate the accuracy of the computationally efficient Wannier-function approximation. Our calculations indicate that the transmission is strongly affected by interface roughness and that information about scale and size of the imperfections can be obtained from transmission data.Comment: 12 pages, 6 Figures included into the text. Final version with minor changes. Accepted by Physical Review

    Unraveling of free carrier absorption for terahertz radiation in heterostructures

    Full text link
    The relation between free carrier absorption and intersubband transitions in semiconductor heterostructures is resolved by comparing a sequence of structures. Our numerical and analytical results show how free carrier absorption evolves from the intersubband transitions in the limit of an infinite number of wells with vanishing barrier width. It is explicitly shown that the integral of the absorption over frequency matches the value obtained by the f-sum rule. This shows that a proper treatment of intersubband transitions is fully sufficient to simulate the entire electronic absorption in heterostructure THz devices.Comment: 6 pages, accepted by Physical Review

    Effects of impurity scattering on electron-phonon resonances in semiconductor superlattice high-field transport

    Full text link
    A non-equilibrium Green's function method is applied to model high-field quantum transport and electron-phonon resonances in semiconductor superlattices. The field-dependent density of states for elastic (impurity) scattering is found non-perturbatively in an approach which can be applied to both high and low electric fields. I-V curves, and specifically electron-phonon resonances, are calculated by treating the inelastic (LO phonon) scattering perturbatively. Calculations show how strong impurity scattering suppresses the electron-phonon resonance peaks in I-V curves, and their detailed sensitivity to the size, strength and concentration of impurities.Comment: 7 figures, 1 tabl

    Inelastic quantum transport in superlattices: success and failure of the Boltzmann equation

    Get PDF
    Electrical transport in semiconductor superlattices is studied within a fully self-consistent quantum transport model based on nonequilibrium Green functions, including phonon and impurity scattering. We compute both the drift velocity-field relation and the momentum distribution function covering the whole field range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear transport situation in the presence of inelastic scattering.Comment: final version with minor changes, to appear in Physical Review Letters, sceduled tentatively for July, 26 (1999

    Baryogenesis with Superheavy Squarks

    Full text link
    We consider a setup where R-parity is violated in the framework of split supersymmetry. The out-of-equilibrium decays of heavy squarks successfully lead to the generation of a baryon asymmetry. We restrict the R-parity violating couplings to the baryon number violating subset to keep the neutralino sufficiently stable to provide the dark matter. The observed baryon asymmetry can be generated for squark masses larger than 10^11 GeV, while neutralino dark matter induces a stronger bound of 10^13 GeV. Some mass splitting between left- and right-handed squarks may be needed to satisfy also constraints from gluino cosmology.Comment: 18 pages, LaTeX, 4 figure

    Inflation Assisted by Heterotic Axions

    Get PDF
    We explore the possibility of obtaining inflation in weakly coupled heterotic string theory, where the model dependent axions are responsible for driving inflation. This model can be considered as a certain extrapolation of m2ϕ2m^{2}\phi^{2}-inflation, and is an attempt to explicitly realize the so called N-flation proposal in string theory. The instanton generated potential for the axions essentially has two parameters; a natural mass scale MM and the string coupling gsg_{s}. For isotropic compactifications leading to of order O(104)\mathcal{O} (10^4) axions in the four dimensional spectrum we find that with (M,gs)≃(MGUT,0.5)(M, g_{s})\simeq(M_{GUT}, 0.5) the observed temperature fluctuations in the CMB are correctly reproduced. We assume an initially random distribution for the vevs of the axions. The spectral index, nsn_{s}, is generically more red than for m2ϕ2m^{2}\phi^{2}-inflation. The greater the vevs, the more red the spectral index becomes. Allowing for a wide range of vevs 55 ee-foldings from the end of inflation, we find 0.946â‰Čnsâ‰Č0.9620.946\lesssim n_{s} \lesssim 0.962. The tensor-to-scalar ratio, rr, is more sensitive to the vevs, but typically smaller than in m2ϕ2m^{2}\phi^{2}-inflation. Furthermore, in the regime where the leading order theory is valid, rr is bounded by r<0.10r < 0.10. The spectral index and the tensor-to-scalar ratio are correlated. For example, ns≃0.951n_{s}\simeq 0.951 corresponds to r≃0.036r\simeq 0.036.Comment: 1+21 pages, 2 figures, v2: Typos corrected, v3: Typos, very minor corrections, reference added, to appear in JCA

    3D Two-Photon Microprinting of Nanoporous Architectures

    Get PDF
    A photoresist system for 3D two‐photon microprinting is presented, which enables the printing of inherently nanoporous structures with mean pore sizes around 50 nm by means of self‐organization on the nanoscale. A phase separation between polymerizable and chemically inert photoresist components leads to the formation of 3D co‐continuous structures. Subsequent washing‐out of the unpolymerized phase reveals the porous polymer structures. To characterize the volume properties of the printed structures, scanning electron microscopy images are recorded from ultramicrotome sections. In addition, the light‐scattering properties of the 3D‐printed material are analyzed. By adjusting the printing parameters, the porosity can be controlled during 3D printing. As an application example, a functioning miniaturized Ulbricht light‐collection sphere is 3D printed and tested

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or
    • 

    corecore