3,627 research outputs found

    Far-Infrared Emission From E and E/S0 Galaxies

    Get PDF
    Studies of cold material through IRAS 60um and 100um observations indicated that half of ordinary E and E/S0 galaxies were detected above the 3 sigma level, indicating that cold gas is common, although no correlation was found between the optical and far- infrared fluxes. Most detections were near the instrumental threshold, and given an improved understanding of detection confidence, we reconsider the 60um and 100um detection rate. After excluding active galactic nuclei, peculiar systems, and background contamination, only 15 non-peculiar E and E/S0 galaxies from the RSA catalog are detected above the 98% confidence level, about 12% of the sample. An unusually high percentage of these 15 galaxies possess cold gas (HI, CO) and optical emission lines (Halpha), supporting the presence of gas cooler than 10E4 K. The 60um to 100um flux ratios imply a median dust temperature for the sample of 30 K, with a range of 23-38 K. These detections define the upper envelope of the optical to far-infrared relationship, F_fir propto F_B^0.24+/-0.08, showing that optically bright objects are also brighter in the infrared, although with considerable dispersion. A luminosity correlation is present with L_fir propto L_B^1.65+/-0.28, but the dust temperature is uncorrelated with luminosity. Models that contain large dust grains composed of amorphous carbon plus silicates come close to reproducing the typical 60um to 100um flux ratios, the far-infrared luminosity, and the L_fir - L_B relationship.Comment: 10 postscript pages, 2 tables, and 2 figure

    Effective Kinetic Theory for High Temperature Gauge Theories

    Full text link
    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature TT) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. We show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T)g(T) of high-temperature gauge theories [and all orders in 1/logg(T)11/\log g(T)^{-1}]. As previously proposed in the literature, a leading-order treatment requires including both 2222 particle scattering processes as well as effective ``1212'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.Comment: 40 pages, new subsection on soft gauge field instabilities adde

    Single-electron latch with granular film charge leakage suppressor

    Full text link
    A single-electron latch is a device that can be used as a building block for Quantum-dot Cellular Automata (QCA) circuits. It consists of three nanoscale metal "dots" connected in series by tunnel junctions; charging of the dots is controlled by three electrostatic gates. One very important feature of a single-electron latch is its ability to store ("latch") information represented by the location of a single electron within the three dots. To obtain latching, the undesired leakage of charge during the retention time must be suppressed. Previously, to achieve this goal, multiple tunnel junctions were used to connect the three dots. However, this method of charge leakage suppression requires an additional compensation of the background charges affecting each parasitic dot in the array of junctions. We report a single-electron latch where a granular metal film is used to fabricate the middle dot in the latch which concurrently acts as a charge leakage suppressor. This latch has no parasitic dots, therefore the background charge compensation procedure is greatly simplified. We discuss the origins of charge leakage suppression and possible applications of granular metal dots for various single-electron circuits.Comment: 21 pages, 4 figure

    Local equilibrium of the quark-gluon plasma

    Full text link
    Within kinetic theory, we look for local equilibrium configurations of the quark-gluon plasma by maximizing the local entropy. We use the well-established transport equations in the Vlasov limit, supplemented with the Waldmann-Snider collision terms. Two different classes of local equilibrium solutions are found. The first one corresponds to the configurations that comply with the so-called collisional invariants. The second one is given by the distribution functions that cancel the collision terms, representing the most probable binary interactions with soft gluon exchange in the t-channel. The two sets of solutions agree with each other if we go beyond these dominant processes and take into account subleading quark-antiquark annihilation/creation and gluon number non-conserving processes. The local equilibrium state appears to be colorful, as the color charges are not locally neutralized. Properties of such an equilibrium state are analyzed. In particular, the related hydrodynamic equations of a colorful fluid are derived. Possible neutralization processes are also briefly discussed.Comment: 20 pages; minor changes, to be published in Phys. Rev.

    Three-Dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks

    Get PDF
    We explore the application of artificial neural networks (ANNs) for the estimation of atmospheric parameters (Teff, logg, and [Fe/H]) for Galactic F- and G-type stars. The ANNs are fed with medium-resolution (~ 1-2 A) non flux-calibrated spectroscopic observations. From a sample of 279 stars with previous high-resolution determinations of metallicity, and a set of (external) estimates of temperature and surface gravity, our ANNs are able to predict Teff with an accuracy of ~ 135-150 K over the range 4250 <= Teff <= 6500 K, logg with an accuracy of ~ 0.25-0.30 dex over the range 1.0 <= logg <= 5.0 dex, and [Fe/H] with an accuracy ~ 0.15-0.20 dex over the range -4.0 <= [Fe/H] <= +0.3. Such accuracies are competitive with the results obtained by fine analysis of high-resolution spectra. It is noteworthy that the ANNs are able to obtain these results without consideration of photometric information for these stars. We have also explored the impact of the signal-to-noise ratio (S/N) on the behavior of ANNs, and conclude that, when analyzed with ANNs trained on spectra of commensurate S/N, it is possible to extract physical parameter estimates of similar accuracy with stellar spectra having S/N as low as 13. Taken together, these results indicate that the ANN approach should be of primary importance for use in present and future large-scale spectroscopic surveys.Comment: 51 pages, 11 eps figures, uses aastex; to appear in Ap

    A randomized, placebo controlled, trial of preoperative sustained release Betamethasone plus non-controlled intraoperative Ketorolac or Fentanyl on pain after diagnostic laparoscopy or laparoscopic tubal ligation [ISRCTN52633712]

    Get PDF
    BACKGROUND: Gynecological laparoscopic surgery procedures are often complicated by postoperative pain resulting in an unpleasant experience for the patient, delayed discharge, and increased cost. Glucocorticosteroids have been suggested to reduce the severity and incidence of postoperative pain. METHODS: This study examines the efficacy of a sustained release betamethasone preparation to reduce postoperative pain and the requirement for pain relief drugs after either diagnostic laparoscopy or tubal ligation. Patients were recruited, as presenting, after obtaining informed consent. Prior to surgery, patients were randomly selected by a computer generated table to receive either pharmacy-coded betamethasone (12 mg IM Celestone™) or an optically identical placebo injection of Intralipid™ and isotonic saline mixture. The effect of non-controlled prophylactic intraoperative treatment with either fentanyl or ketorolac per surgeon's orders was also noted in this study. Blood samples taken at recovery and at discharge times were extracted and analyzed for circulating betamethasone. Visual analog scale data on pain was gathered at six post-recovery time points in a triple blind fashion and statistically compared. The postoperative requirement for pain relief drugs was also examined. RESULTS: Although the injection achieved a sustained therapeutic concentration, no beneficial effect of IM betamethasone on postoperative pain or reduction in pain relief drugs was observed during the postoperative period. Indeed, the mean combined pain scores during the 2 hour postoperative period, adjusted for postoperative opioids as the major confounding factor, were higher approaching statistical significance (P = 0.056) in the treatment group. Higher pain scores were also observed for the tubal ligation patients relative to diagnostic laparoscopy. Intraoperative fentanyl treatment did not significantly lower the average pain score during the 2 hour postoperative period. Intraoperative ketorolac treatment significantly lowered (P = 0.027) pain scores and reduced the postoperative requirement for additional pain relief drugs. CONCLUSIONS: There was a lack of efficacy of preoperative sustained release betamethasone in reducing postoperative pain despite maintaining a therapeutic concentration during the postoperative period. Intraoperative Ketorolac did afford some short-term pain relief in the postoperative period and reduced the need for additional pain relief drugs

    Optical and Infrared Photometry of the Unusual Type Ia Supernova 2000cx

    Get PDF
    We present optical and infrared photometry of the unusual Type Ia supernova 2000cx. With the data of Li et al. (2001) and Jha (2002), this comprises the largest dataset ever assembled for a Type Ia SN, more than 600 points in UBVRIJHK. We confirm the finding of Li et al. regarding the unusually blue B-V colors as SN 2000cx entered the nebular phase. Its I-band secondary hump was extremely weak given its B-band decline rate. The V minus near infrared colors likewise do not match loci based on other slowly declining Type Ia SNe, though V-K is the least ``abnormal''. In several ways SN 2000cx resembles other slow decliners, given its B-band decline rate (Delta m_15(B) = 0.93), the appearance of Fe III lines and weakness of Si II in its pre-maximum spectrum, the V-K colors and post-maximum V-H colors. If the distance modulus derived from Surface Brightness Fluctuations of the host galaxy is correct, we find that the rate of light increase prior to maximum, the characteristics of the bolometric light curve, and the implied absolute magnitude at maximum are all consistent with a sub-luminous object with Delta m_15(B) ~ 1.6-1.7 having a higher than normal kinetic energy.Comment: 46 pages, 17 figures, to be published in Publications of the Astronomical Society of the Pacifi
    corecore