23,785 research outputs found

    Pre-encounter observations of 951 Gaspra

    Get PDF
    Photometry and colorimetry of 951 Gaspra were obtained on nine nights during the 1990 opposition. A composite lightcurve constructed using data from eight of those nights yielded a synodic rotational period of 7.04346 +/- 0.00006 hours, a mean absolute V magnitude of 11.8026 +/- 0.0025, and a slope parameter of 0.285 +/- 0.005. The apparent discrepancy can be easily resolved by realizing that their determination is based primarily on data obtained after opposition. Different phase functions pre- and post-opposition are a natural consequence of a changing aspect during an opposition. If the sub-Earth latitude on Gaspra is at a less equatorial aspect after opposition than it was before opposition, then we would expect to see a shallower phase function (corresponding to a larger numerical value of the slope parameter). Adding weight to this hypothesis is the last observation of the opposition, made in May after Gaspra had passed post opposition quadrature, which is displaced toward brighter absolute magnitudes relative to the rest of our data, indicating an even more poleward sub-Earth latitude than earlier in the opposition. Because the orbits of Earth and Gaspra are nearly coplanar, a substantial change in sub-Earth latitude during the opposition would not have been possible unless the obliquity of the asteroid's rotational axis is not small

    Phase transitions in diluted negative-weight percolation models

    Full text link
    We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negative weight. The resulting percolation problem is fundamentally different from conventional percolation, as we have seen in a previous study of this model for the undiluted case. Here, we investigate how the percolation transition is affected by additional dilution. We consider two types of dilution: either a certain fraction of edges exhibit zero weight, or a fraction of edges is even absent. We study these systems numerically using exact combinatorial optimization techniques based on suitable transformations of the graphs and applying matching algorithms. We perform a finite-size scaling analysis to obtain the phase diagram and determine the critical properties of the phase boundary. We find that the first type of dilution does not change the universality class compared to the undiluted case whereas the second type of dilution leads to a change of the universality class.Comment: 8 pages, 7 figure

    Gravitating superconducting strings with timelike or spacelike currents

    Full text link
    We construct gravitating superconducting string solutions of the U(1)_{local} x U(1)_{global} model solving the coupled system of Einstein and matter field equations numerically. We study the properties of these solutions in dependence on the ratio between the symmetry breaking scale and the Planck mass. Using the macroscopic stability conditions formulated by Carter, we observe that the coupling to gravity allows for a new stable region that is not present in the flat space-time limit. We match the asymptotic metric to the Kasner metric and show that the relations between the Kasner coefficients and the energy per unit length and tension suggested previously are well fulfilled for symmetry breaking scale much smaller than the Planck mass. We also study the solutions to the geodesic equation in this space-time. While geodesics in the exterior space-time of standard cosmic strings are just straight lines, test particles experience a force in a general Kasner space-time and as such bound orbits are possible.Comment: 16 pages including 14 figure

    Ferroelectric properties of charge-ordered alpha-(BEDT-TTF)2I3

    Get PDF
    A detailed investigation of the out-of-plane electrical properties of charge-ordered alpha-(BEDT-TTF)2I3 provides clear evidence for ferroelectricity. Similar to multiferroic alpha-(BEDT-TTF)2Cu[N(CN)2]Cl, the polar order in this material is ascribed to the occurrence of bond- and site-centered charge order. Dielectric response typical for relaxor ferroelectricity is found deep in the charge-ordered state. We suggest an explanation in terms of the existence of polar and nonpolar stacks of the organic molecules in this material, preventing long-range ferroelectricity. The results are discussed in relation to the formation or absence of electronic polar order in related charge-transfer salts.Comment: 8 pages, 4 figures. Revised version as accepted for publication in Phys. Rev.

    Systematic Mapping of the Hubbard Model to the Generalized t-J Model

    Full text link
    The generalized t-J model conserving the number of double occupancies is constructed from the Hubbard model at and in the vicinity of half-filling at strong coupling. The construction is realized by a self-similar continuous unitary transformation. The flow equation is closed by a truncation scheme based on the spatial range of processes. We analyze the conditions under which the t-J model can be set up and we find that it can only be defined for sufficiently large interaction. There, the parameters of the effective model are determined.Comment: 16 pages, 13 figures included. v2: Order of sections changed. Calculation and discussion of apparent gap in Section IV.A correcte

    A BeppoSAX observation of the super-soft source CAL87

    Get PDF
    We report on a BeppoSAX Concentrator Spectrometer observation of the super-soft source (SSS) CAL87. The X-ray emission in SSS is believed to arise from nuclear burning of accreted material on the surface of a white dwarf (WD). An absorbed blackbody spectral model gives a chi^2_v of 1.18 and a temperature of 42 +/- ^13 _11 eV. However, the derived luminosity and radius are greater than the Eddington limit and radius of a WD. Including an O viii edge at 0.871 keV gives a significantly better fit (at > 95% confidence) and results in more realistic values of the source luminosity and radius. We also fit WD atmosphere models to the CAL87 spectrum. These also give reasonable bolometric luminosities and radii in the ranges 2.7-4.8 10^{36} erg/s and 8-20 10^7 cm, respectively. These results support the view that the X-ray emission from CAL87 results from nuclear burning in the atmosphere of a WD.Comment: 4 pages. Accepted for publication in A&A (Letters

    A system of relational syllogistic incorporating full Boolean reasoning

    Full text link
    We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form: Some A are R-related to some B; Some A are R-related to all B; All A are R-related to some B; All A are R-related to all B. Such primitives formalize sentences from natural language like `All students read some textbooks'. Here A and B denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.Comment: Available at http://link.springer.com/article/10.1007/s10849-012-9165-

    Coherent control of photon transmission : slowing light in coupled resonator waveguide doped with Λ\Lambda Atoms

    Full text link
    In this paper, we propose and study a hybrid mechanism for coherent transmission of photons in the coupled resonator optical waveguide (CROW) by incorporating the electromagnetically induced transparency (EIT) effect into the controllable band gap structure of the CROW. Here, the configuration setup of system consists of a CROW with homogeneous couplings and the artificial atoms with Λ\Lambda-type three levels doped in each cavity. The roles of three levels are completely considered based on a mean field approach where the collection of three-level atoms collectively behave as two-mode spin waves. We show that the dynamics of low excitations of atomic ensemble can be effectively described by an coupling boson model. The exactly solutions show that the light pulses can be stopped and stored coherently by adiabatically controlling the classical field.Comment: 10 pages, 6 figure
    • 

    corecore