3,232,602 research outputs found
Correlations in a BEC collision: First-principles quantum dynamics with 150 000 atoms
The quantum dynamics of colliding Bose-Einstein condensates with 150 000
atoms are simulated directly from the Hamiltonian using the stochastic
positive-P method. Two-body correlations between the scattered atoms and their
velocity distribution are found for experimentally accessible parameters.
Hanbury Brown-Twiss or thermal-like correlations are seen for copropagating
atoms, while number correlations for counterpropagating atoms are even stronger
than thermal correlations at short times. The coherent phase grains grow in
size as the collision progresses with the onset of growth coinciding with the
beginning of stimulated scattering. The method is versatile and usable for a
range of cold atom systems.Comment: 4 pages, 4 figures. v2: Rewording and style changes, minor except for
rewrite of background on the positive-P representation. Original research
unchange
Models for thin viscous sheets
Leading-order equations governing the dynamics of a two-dimensional thin viscous sheet are derived. The inclusion of inertia effects is found to result in an ill-posed model when the sheet is compressed, and the resulting paradox is resolved by rescaling the equations over new length- and timescales which depend on the Reynolds number of the flow and the aspect ratio of the sheet. Physically this implies a dominant lengthscale for transverse displacements during viscous buckling. The theory is generalised to give new models for fully three-dimensional sheets
- …
