3,217,338 research outputs found

    Correlations in a BEC collision: First-principles quantum dynamics with 150 000 atoms

    Full text link
    The quantum dynamics of colliding Bose-Einstein condensates with 150 000 atoms are simulated directly from the Hamiltonian using the stochastic positive-P method. Two-body correlations between the scattered atoms and their velocity distribution are found for experimentally accessible parameters. Hanbury Brown-Twiss or thermal-like correlations are seen for copropagating atoms, while number correlations for counterpropagating atoms are even stronger than thermal correlations at short times. The coherent phase grains grow in size as the collision progresses with the onset of growth coinciding with the beginning of stimulated scattering. The method is versatile and usable for a range of cold atom systems.Comment: 4 pages, 4 figures. v2: Rewording and style changes, minor except for rewrite of background on the positive-P representation. Original research unchange

    Implications of Cosmic Repulsion for Gravitational Theory

    Full text link
    In this paper we present a general, model independent analysis of a recently detected apparent cosmic repulsion, and discuss its potential implications for gravitational theory. In particular, we show that a negatively spatially curved universe acts like a diverging refractive medium, to thus naturally cause galaxies to accelerate away from each other. Additionally, we show that it is possible for a cosmic acceleration to only be temporary, with some accelerating universes actually being able to subsequently recontract.Comment: RevTeX, 13 page

    Programmable networks for quantum algorithms

    Full text link
    The implementation of a quantum computer requires the realization of a large number of N-qubit unitary operations which represent the possible oracles or which are part of the quantum algorithm. Until now there are no standard ways to uniformly generate whole classes of N-qubit gates. We have developed a method to generate arbitrary controlled phase shift operations with a single network of one-qubit and two-qubit operations. This kind of network can be adapted to various physical implementations of quantum computing and is suitable to realize the Deutsch-Jozsa algorithm as well as Grover's search algorithm.Comment: 4 pages. Accepted version; Journal-ref. adde

    FORTRAN read package

    Get PDF
    Flexible input schemes for digital programs are described. No card format or special order of cards is required. Read package is controlled by small set of parameters which can be changed to account for differences in computers and digital programs

    A Dark Matter Signature for Condensed Neutrinos

    Full text link
    We derive the signature for condensed neutrino objects (CNOs) as the primary source of Dark Matter. Restricting our source data to minimize systematic errors, we find that by just using weak lensing data and Sunyaev-Zel'dovich data, that there may be a weak CNO signature.Comment: 21 pages, 5 figures. Accepted for publication in the International Journal of Modern Physics D (IJMPD
    corecore