119 research outputs found

    Filling-induced Mott transition and pseudogap physics in the triangular lattice Hubbard model

    Full text link
    It has been reported that upon doping a Mott insulator, there can be a crossover to a strongly correlated metallic phase followed by a first-order transition to another thermodynamically stable metallic phase. We call this first-order metal-metal transition the Sordi transition. To show theoretically that this transition is observable, it is important to provide calculations in situations where magnetic phase transitions do not hide the Sordi transition. It is also important to show that it can be found on large clusters and with different approaches. Here, we use the dynamical cluster approximation to reveal the Sordi transition on a triangular lattice at finite temperature in situations where there is no long-range magnetic correlations. This is relevant for experiments on candidate spin-liquid organics. We also show that the metallic phase closest to the insulator is a distinct pseudogap phase that occurs because of strong interactions and short-range correlations

    Mott transition, Widom line and pseudogap in the half-filled triangular lattice Hubbard model

    Full text link
    The Mott transition is observed experimentally in materials that are magnetically frustrated so that long-range order does not hide the Mott transition at finite temperature. The Hubbard model on the triangular lattice at half-filling is a paradigmatic model to study the interplay of interactions and frustration on the normal-state phase diagram. We use the dynamical cluster approximation with continuous time auxiliary field quantum Monte Carlo to solve this model for 1, 4, 6, 12, and 16 site clusters with detailed analysis performed for the 6 site cluster. We show that a) for every cluster there is an inflection point in the double occupancy as a function of interaction, defining a Widom line that extends above the critical point of the first-order Mott transition; b) the presence of this line and the cluster size dependence argue for the observability of the Mott transition at finite temperature in the thermodynamic limit; c) the loss of spectral weight in the metal to Mott insulator transition as a function of temperature and for strong interactions is momentum dependent, the hallmark of a pseudogap. That pseudogap spans a large region of the phase diagram near the Mott transition.Comment: Open source version of the published paper. 16 pages, 8 figures, LaTe

    Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein Sequences from Complete Genomes Without Sequence Alignment

    Get PDF
    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists tree of life based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution

    Characterization of an Ionization Readout Tile for nEXO

    Full text link
    A new design for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} ×\times 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207^{207}Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution σ/E\sigma/E=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
    • …
    corecore