6,401 research outputs found

    The Power Of God: Readings On Omnipotence And Evil

    Get PDF

    Optimal queue-size scaling in switched networks

    Full text link
    We consider a switched (queuing) network in which there are constraints on which queues may be served simultaneously; such networks have been used to effectively model input-queued switches and wireless networks. The scheduling policy for such a network specifies which queues to serve at any point in time, based on the current state or past history of the system. In the main result of this paper, we provide a new class of online scheduling policies that achieve optimal queue-size scaling for a class of switched networks including input-queued switches. In particular, it establishes the validity of a conjecture (documented in Shah, Tsitsiklis and Zhong [Queueing Syst. 68 (2011) 375-384]) about optimal queue-size scaling for input-queued switches.Comment: Published in at http://dx.doi.org/10.1214/13-AAP970 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Anatomy of the AGN in NGC 5548 II. The spatial, temporal, and physical nature of the outflow from HST/COS Observations

    Get PDF
    Context. AGN outflows are thought to influence the evolution of their host galaxies and of super massive black holes. Our deep multiwavelength campaign on NGC 5548 has revealed a new, unusually strong X-ray obscuration, accompanied by broad UV absorption troughs observed for the first time in this object. The X-ray obscuration caused a dramatic decrease in the incident ionizing flux on the outflow that produces the long-studied narrow UV absorption lines in this AGN. The resulting data allowed us to construct a comprehensive physical, spatial, and temporal picture for this enduring AGN wind. Aims. We aim to determine the distance of the narrow UV outflow components from the central source, their total column-density, and the mechanism responsible for their observed absorption variability. Methods. We study the UV spectra acquired during the campaign, as well as from four previous epochs (1998−2011). Our main analysis tools are ionic column-density extraction techniques, photoionization models based on the code CLOUDY, and collisional excitation simulations. Results. A simple model based on a fixed total column-density absorber, reacting to changes in ionizing illumination, matches the very different ionization states seen in five spectroscopic epochs spanning 16 years. The main component of the enduring outflow is situated at 3.5 ± 1.1 pc from the central source, and its distance and number density are similar to those of the narrow-emitting-line region in this object. Three other components are situated between 5−70 pc and two are farther than 100 pc. The wealth of observational constraints and the anti-correlation between the observed X-ray and UV flux in the 2002 and 2013 epochs make our physical model a leading contender for interpreting trough variability data of quasar outflows. Conclusions. This campaign, in combination with prior UV and X-ray data, yields the first simple model that can explain the physical characteristics and the substantial variability observed in an AGN outflow

    Validation of administrative hospital data for identifying incident pancreatic and periampullary cancer cases: A population-based study using linked cancer registry and administrative hospital data in New South Wales, Australia

    Full text link
    © 2015 Published by the BMJ Publishing Group Limited. For permission to use. Objectives: Informing cancer service delivery with timely and accurate data is essential to cancer control activities and health system monitoring. This study aimed to assess the validity of ascertaining incident cases and resection use for pancreatic and periampullary cancers from linked administrative hospital data, compared with data from a cancer registry (the 'gold standard'). Design, setting and participants: Analysis of linked statutory population-based cancer registry data and administrative hospital data for adults (aged .18 years) with a pancreatic or periampullary cancer case diagnosed during 2005.2009 or a hospital admission for these cancers between 2005 and 2013 in New South Wales, Australia. Methods: The sensitivity and positive predictive value (PPV) of pancreatic and periampullary cancer case ascertainment from hospital admission data were calculated for the 2005.2009 period through comparison with registry data. We examined the effect of the look-back period to distinguish incident cancer cases from prevalent cancer cases from hospital admission data using 2009 and 2013 as index years. Results: Sensitivity of case ascertainment from the hospital data was 87.5% (4322/4939), with higher sensitivity when the cancer was resected (97.9%, 715/730) and for pancreatic cancers (88.6%, 3733/4211). Sensitivity was lower in regional (83.3%) and remote (85.7%) areas, particularly in areas with interstate outflow of patients for treatment, and for cases notified to the registry by death certificate only (9.6%). The PPV for the identification of incident cases was 82.0% (4322/5272). A 2-year look-back period distinguished the majority (98%) of incident cases from prevalent cases in linked hospital data. Conclusions: Pancreatic and periampullary cancer cases and resection use can be ascertained from linked hospital admission data with sufficient validity for informing aspects of health service delivery and system-level monitoring. Limited tumour clinical information and variation in case ascertainment across population subgroups are limitations of hospitalderived cancer incidence data when compared with population cancer registries

    Probing the Local Planetary Nebula Luminosity Function with Gaia

    Full text link
    The Planetary Nebula Luminosity Function (PNLF) remains an important extragalactic distance indicator despite a still limited understanding of its most important feature - the bright cut-off. External galaxies benefit from consistent distance and extinction, which makes determining the PNLF easier but detailed study of individual objects much more difficult. Now, the advent of parallaxes from the Gaia mission has dramatically improved distance estimates to planetary nebulae (PNe) in the Milky Way. We have acquired ground-based narrowband imagery and measured the [OIII] fluxes for a volume-limited sample of hundreds of PNe whose best distance estimates from Gaia parallaxes and statistical methods place them within 3 kpc of the Sun. We present the first results of our study, comparing the local PNLF to other galaxies with different formation histories, and discussing how the brightness of the PNe relates to the evolutionary state of their central stars and the properties of the nebula.Comment: 6 pages, 3 figures, to appear in the Proceedings of IAU Symposium 384: Planetary Nebulae: a Universal Toolbox in the Era of Precision Astrophysic
    • …
    corecore