102 research outputs found
ΠΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½ΡΡ Π³ΡΡΠΏΠΏ
Let Ο be a set of primes. Recall that a group G is said to be a residually finite Ο-group if for every nonidentity element a of G there exists a homomorphism of the group G onto some finite Ο-group such that the image of the element a differs from 1. A group G will be said to be a virtually residually finite Ο-group if it contains a finite index subgroup which is a residually finite Ο-group. Recall that an element g in G is said to be Ο-radicable if g is an m-th power of an element of G for every positive Ο-number m. Let N be a nilpotent group and let all power subgroups in N are finitely separable. It is proved that N is a residually finite Ο-group if and only if N has no nonidentity Ο-radicable elements. Suppose now that Ο does not coincide with the set Ξ of all primes. Let Ο 0 be the complement of Ο in the set Ξ . And let T be a Ο 0 component of N i.e. T be a set of all elements of N whose orders are finite Ο 0 -numbers. We prove that the following three statements are equivalent: (1) the group N is a virtually residually finite Ο-group; (2) the subgroup T is finite and quotient group N/T is a residually finite Ο-group; (3) the subgroup T is finite and T coincides with the set of all Ο-radicable elements of N.ΠΡΡΡΡ Ο β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π». ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, Π΅ΡΠ»ΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π½Π΅Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅- ΠΌΠ΅Π½ΡΠ° a Π³ΡΡΠΏΠΏΡ G ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π³ΠΎΠΌΠΎΠΌΠΎΡΡΠΈΠ·ΠΌ Π³ΡΡΠΏΠΏΡ G Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ Ο-Π³ΡΡΠΏΠΏΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ±ΡΠ°Π· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° a ΠΎΡΠ»ΠΈΡΠ΅Π½ ΠΎΡ 1. ΠΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, Π΅ΡΠ»ΠΈ ΠΎΠ½Π° ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΠΎΠ΄Π³ΡΡΠΏ- ΠΏΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ°, Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΠ»Π΅ΠΌΠ΅Π½Ρ g Π³ΡΡΠΏΠΏΡ G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Ο-ΠΏΠΎΠ»Π½ΡΠΌ, Π΅ΡΠ»ΠΈ ΠΈΠ· Π½Π΅Π³ΠΎ Π² Π³ΡΡΠΏΠΏΠ΅ G ΠΌΠΎΠΆ- Π½ΠΎ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΊΠΎΡΠ΅Π½Ρ m-ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Ο-ΡΠΈΡΠ»Π° m. ΠΡΡΡΡ N β Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½Π°Ρ Π³ΡΡΠΏΠΏΠ°, ΠΈ Π²ΡΠ΅ ΡΡΠ΅ΠΏΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏΡ Π³ΡΡΠΏΠΏΡ N ΡΠΈΠ½ΠΈΡΠ½ΠΎ ΠΎΡΠ΄Π΅Π»ΠΈΠΌΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° N Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο- Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π² Π½Π΅ΠΉ Π½Π΅Ρ Ο-ΠΏΠΎΠ»Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΠΎΡΠ»ΠΈΡΠ½ΡΡ
ΠΎΡ 1. ΠΡΡΡΡ ΡΠ΅ΠΏΠ΅ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ο Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ Ξ Π²ΡΠ΅Ρ
ΠΏΡΠΎΡΡΡΡ
ΡΠΈ- ΡΠ΅Π», ΠΈ Ο 0 β Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Ο Π² ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Ξ . Π ΠΏΡΡΡΡ T β Ο 0 -ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° Π³ΡΡΠΏΠΏΡ N, Ρ. Π΅. ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π³ΡΡΠΏΠΏΡ N, ΠΏΠΎΡΡΠ΄ΠΊΠΈ ΠΊΠΎΡΠΎΡΡΡ
ΠΊΠΎΠ½Π΅ΡΠ½Ρ ΠΈ ΡΠ²Π»ΡΡΡΡΡ Ο 0 -ΡΠΈΡΠ»Π°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡ ΡΠ°Π²Π½ΠΎΡΠΈΠ»ΡΠ½Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ±ΠΎΠΉ: (1) Π³ΡΡΠΏΠΏΠ° N ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ; (2) ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏΠ° T ΠΊΠΎΠ½Π΅ΡΠ½Π°, ΠΈ ΡΠ°ΠΊΡΠΎΡ-Π³ΡΡΠΏΠΏΠ° N/T Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ; (3) ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏΠ° T ΠΊΠΎΠ½Π΅ΡΠ½Π° ΠΈ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ Π²ΡΠ΅Ρ
Ο-ΠΏΠΎΠ»Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π³ΡΡΠΏΠΏΡ N
Π ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π³ΡΡΠΏΠΏ ΠΠ°ΡΠΌΡΠ»Π°Π³Π° β Π‘ΠΎΠ»ΠΈΡΡΡΠ°
Let Ο be a set of primes. For Baumslag β Solitar groups the necessary and sufficient condition to be virtual residuality by finite Οβgroups is obtained.ΠΡΡΡΡ Ο β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π». ΠΠ»Ρ Π³ΡΡΠΏΠΏ ΠΠ°ΡΠΌΡΠ»Π°Π³Π° β Π‘ΠΎΠ»ΠΈΡΡΡΠ° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ ΟβΠ³ΡΡΠΏΠΏΠ°ΠΌΠΈ
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π³ΡΡΠΏΠΏ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π°
The generalization of one classical Seksenbaev theorem for polycyclic groups is obtained. Seksenbaev proved that if G is a polycyclic group which is residually finite p-group for infinitely many primes p, it is nilpotent. Recall that a group G is said to be a residually finite p-group if for every nonidentity element a of G there exists a homomorphism of the group G onto a finite p-group such that the image of the element a differs from 1. One of the generalizations of the notation of a polycyclic group is the notation of a finite rank group. Recall that a group G is said to be a group of finite rank if there exists a positive integer r such that every finitely generated subgroup in G is generated by at most r elements. We prove the following generalization of Seksenbaev theorem: if G is a group of finite rank which is a residually finite p-group for infinitely many primes p, it is nilpotent. Moreover, we prove that if for every setΒ Ο of almost all primes the group G of finite rank is a residually finite nilpotent Ο-group, it is nilpotent. For nilpotent groups of finite rank the necessary and sufficient condition to be a residually finite Ο-group is obtained, whereΒ Ο is a set of primes.ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΎΡΠ΅ΠΌΡ Π.Π‘Π΅ΠΊΡΠ΅Π½Π±Π°Π΅Π²Π° ΠΎ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π³ΡΡΠΏΠΏΠ°Ρ
. Π‘Π΅ΠΊΡΠ΅Π½Π±Π°Π΅Π² Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ Π³ΡΡΠΏΠΏΠ° G Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π΄Π»Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π» p, ΡΠΎ ΠΎΠ½Π° Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½Π°. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, Π΅ΡΠ»ΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π½Π΅Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° a Π³ΡΡΠΏΠΏΡ G ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π³ΠΎΠΌΠΎΠΌΠΎΡΡΠΈΠ·ΠΌ Π³ΡΡΠΏΠΏΡ G Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ p-Π³ΡΡΠΏΠΏΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ±ΡΠ°Π· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° a ΠΎΡΠ»ΠΈΡΠ΅Π½ ΠΎΡ 1. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π°. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π°, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ΅Π»ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ r ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ Π»ΡΠ±Π°Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΏΠΎΡΠΎΠΆΠ΄Π΅Π½Π½Π°Ρ ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏΠ° Π³ΡΡΠΏΠΏΡ G ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΡΡΡ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ r ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΎΡΠ΅ΠΌΡ Π‘Π΅ΠΊΡΠ΅Π½Π±Π°Π΅Π²Π°: Π΅ΡΠ»ΠΈ Π³ΡΡΠΏΠΏΠ° G ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π΄Π»Ρ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π» p, ΡΠΎ ΠΎΠ½Π° Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½Π°. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Ο, ΡΠΎΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΠ· ΠΏΠΎΡΡΠΈ Π²ΡΠ΅Ρ
ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π», Π³ΡΡΠΏΠΏΠ° G ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, ΡΠΎ ΠΎΠ½Π° Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½Π°. ΠΠ»Ρ Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, Π³Π΄Π΅ Ο β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π»
ΠΠΠΠΠ’ΠΠ Π«Π ΠΠΠΠ ΠΠΠ‘ΠΠΠΠ¦ΠΠΠΠΠ«Π Π‘ΠΠΠΠ‘Π’ΠΠ Π ΠΠΠ ΠΠ¨ΠΠΠ«Π₯ ΠΠ Π£ΠΠ ΠΠΠΠΠ§ΠΠΠΠ Π ΠΠΠΠ
The generalization of one classical Smelβkinβs theorem for polycyclic groups is obtained. A. L. Smelkin proved that if G is a polycyclic group, then it is a virtually residually finite p-group for any prime p. Recall that a group G is said to be a residually finite p-group if for every nonidentity element a of G there exists a homomorphism of the group G onto some finite p-group such that the image of the element a differs from 1. A group G will be said to be a virtually residually finite p-group if it contains a finite index subgroup which is a residually finite p-group. One of the generalizations of the notation of polycyclic group is a notation of soluble finite rank group. Recall that a group G is said to be a group of finite rank if there exists a positive integer r such that every finitely generated subgroup in G is generated by at most r elements. For soluble groups of finite rank the following necessary and sufficient condition to be a residually finite Ο-group for some finite set Ο of primes is obtained. If G is a group of finite rank, then the group G is a residually finite Ο- group for some finite set Ο of primes if and only if G is a reduced poly-(cyclic, quasicyclic, or rational) group. Recall that a group G is said to be a reduced group if it has no nonidentity radicable subgroups. A group H is said to be a radicable group if every element h in H is an mth power of an element of H for every positive number m. It is proved that if a soluble group of finite rank is a residually finite Ο- group for some finite set Ο of primes, then it is a virtually residually finite nilpotent Ο-group. We prove also the following generalization of Smelβkinβs theorem.Β Let Ο be a finite set of primes. If G is a soluble group of finite rank, then the group G is a virtually residually finite Ο-group if and only if G is a reduced poly-(cyclic, quasicyclic, or rational) group and G has no Ο-radicable elements of infinite order. Recall that an element g in G is said to be Ο-radicable if g is an mth power of an element of G for every positive Ο-number m.Β ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΎΡΠ΅ΠΌΡ Π¨ΠΌΠ΅Π»ΡΠΊΠΈΠ½Π° ΠΎ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
Π³ΡΡΠΏΠΏΠ°Ρ
. Π. Π. Π¨ΠΌΠ΅Π»ΡΠΊΠΈΠ½ Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π΅ΡΠ»ΠΈ G β ΠΏΠΎΠ»ΠΈΡΠΈΠΊ- Π»ΠΈΡΠ΅ΡΠΊΠ°Ρ Π³ΡΡΠΏΠΏΠ°, ΡΠΎ ΠΎΠ½Π° ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° p. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, Π΅ΡΠ»ΠΈ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π½Π΅Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° a Π³ΡΡΠΏΠΏΡ G ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π³ΠΎΠΌΠΎΠΌΠΎΡΡΠΈΠ·ΠΌ Π³ΡΡΠΏΠΏΡ G Π½Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ p-Π³ΡΡΠΏΠΏΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ±ΡΠ°Π· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° a ΠΎΡΠ»ΠΈΡΠ΅Π½ ΠΎΡ 1. ΠΡΡΠΏΠΏΠ° G Π½Π°Π·Ρ- Π²Π°Π΅ΡΡΡ ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ, Π΅ΡΠ»ΠΈ ΠΎΠ½Π° ΡΠΎΠ΄Π΅ΡΠΆΠΈΡ ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ p-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎ- Π½ΡΡΠΈΠ΅ ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π°. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π°, Π΅ΡΠ»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ΅Π»ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ r ΡΠ°ΠΊΠΎΠ΅, ΡΡΠΎ Π»ΡΠ±Π°Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΏΠΎΡΠΎΠΆΠ΄Π΅Π½Π½Π°Ρ ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏΠ° Π³ΡΡΠΏΠΏΡ G ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅ΡΡΡ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ r ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ. ΠΠ»Ρ ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠΎΡΡΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π΄Π»Ρ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Ο ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π». ΠΡΡΠΏΠΏΠ° G ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π΄Π»Ρ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Ο ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π» ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° G ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΈ-(ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ, ΠΊΠ²Π°Π·ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ, ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ) Π³ΡΡΠΏΠΏΠΎΠΉ. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π³ΡΡΠΏΠΏΠ° G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ΅Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ, Π΅ΡΠ»ΠΈ Π² Π½Π΅ΠΉ Π½Π΅Ρ Π½Π΅Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΡΡ
ΠΏΠΎΠ»Π½ΡΡ
ΠΏΠΎΠ΄Π³ΡΡΠΏΠΏ. ΠΡΡΠΏΠΏΡ H ΠΌΡ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΠΏΠΎΠ»Π½ΠΎΠΉ, Π΅ΡΠ»ΠΈ Π² Π½Π΅ΠΉ ΠΈΠ· Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° h ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·Π²Π»Π΅ΡΡ ΠΊΠΎΡΠ΅Π½Ρ Π»ΡΠ±ΠΎΠΉ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΡΠ°Π·ΡΠ΅ΡΠΈΠΌΠ°Ρ Π³ΡΡΠΏΠΏΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ Π΄Π»Ρ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Ο ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π», ΡΠΎ ΠΎΠ½Π° ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Π½ΠΈΠ»ΡΠΏΠΎΡΠ΅Π½ΡΠ½ΡΠΌΠΈΒ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π²ΡΡΠ΅ ΡΠ΅ΠΎΡΠ΅ΠΌΡ Π¨ΠΌΠ΅Π»ΡΠΊΠΈΠ½Π°. ΠΡΡΡΡ Ο β ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΡΡΡ
ΡΠΈΡΠ΅Π». Π Π°Π·ΡΠ΅ΡΠΈΠΌΠ°Ρ Π³ΡΡΠΏΠΏΠ° G ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π½Π³Π° ΠΏΠΎΡΡΠΈ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠΈΡΡΠ΅ΠΌΠ° ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌΠΈ Ο-Π³ΡΡΠΏΠΏΠ°ΠΌΠΈ ΡΠΎΠ³Π΄Π° ΠΈ ΡΠΎΠ»ΡΠΊΠΎ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° G β ΡΠ΅Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΠΏΠΎΠ»ΠΈ- (ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ, ΠΊΠ²Π°Π·ΠΈΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ, ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ) Π³ΡΡΠΏΠΏΠ°, Π½Π΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ°Ρ Ο-ΠΏΠΎΠ»Π½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ°. ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΠ»Π΅ΠΌΠ΅Π½Ρ g Π³ΡΡΠΏΠΏΡ G Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Ο-ΠΏΠΎΠ»Π½ΡΠΌ, Π΅ΡΠ»ΠΈ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ο-ΡΠΈΡΠ»Π° m ΠΈΠ· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ° g ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·Π²Π»Π΅ΡΡ Π² Π³ΡΡΠΏΠΏΠ΅ G ΠΊΠΎΡΠ΅Π½Ρ m-ΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ
Fundamentos del enfoque de sistemas para la metodologΓa de evaluaciΓ³n de instalaciones de obras acuΓ‘ticas en medio natural
De acuerdo con los requisitos reglamentarios y ambientales sobre el funcionamiento de las instalaciones sanitarias denominadas objetos de actividad, se debe evaluar la influencia ambiental de estas instalaciones. en tΓ©rminos de utilizaciΓ³n de los recursos hΓdricos, que es exactamente el objetivo de este estudio. Los fundamentos de la metodologΓa de esta evaluaciΓ³n se desarrollan mediante el enfoque de sistema centrado en la nociΓ³n de sistema. Los resultados del estudio de la interacciΓ³n del objeto de actividad (OA) con los ambientes naturales (NENV) del geosistema de cuenca se utilizan en el desarrollo de los fundamentos de la metodologΓa de evaluaciΓ³n de la influencia ambiental (EIA). Los resultados del estudio se han utilizado para diseΓ±ar y construir instalaciones de ingenierΓa hidroelΓ©ctrica en el norte del CΓ‘ucaso en el sur de Rusi
Eventual role of myocardial muscular Β«bridgesΒ» in the pathogenesis of acute coronary syndrome
Aim of the study was to investigate the role of myocardial muscular Β«bridgesΒ» (MMB) in the pathogenesis of acute coronary syndrome (ACS). Material and methods. The study comprised of 27 patents with ACS: 21 (77,8 %) with diagnosed unstable angina pectoris (UA) and 6 (22,2 %) with acute anterior myocardial infarction with ST elevation (STEMI). Results. All patients with STEMI had positive qualitative troponin test. The serum level of creatine phosphokinase (CPK) was 857.7 Β± 495.5 U/l, the CPK MB level was 46.5 Β± 42.4 U/l. The patientsβ age varied from 32 to 68 years (on average, 52.4 Β± 4.6 years). Selective coronary angiography (CAG) revealed systolic functional obstruction of the LAD with vesselβs lumen recovery to the norm during diastole in all 27 patients, which is typical for MMB. In all cases with UA, the clinical aggravation was associated with ECG signs of transitory or permanent myocardial hypoxia in the territory supplied by the LAD, while the patients with STEMI had ECG, biochemical and EchoCG signs of myocardial damage and kinetics disturbances in the left ventricular areas supplied by the LAD. All patients underwent intravascular instrumental investigation. During in-hospital stage all patients received conservative therapy including Ξ²-adrenergic receptors or CA-channels blockers; ACE inhibitors; disaggregants. Upon 12 months all patients underwent repeated outpatient examination. In all cases, the conducted therapy resulted in the improvement of the patientsβ condition. Conclusion. This study allows concluding that MMB play an essential role in the pathogenesis of ACS, including STEMI
ΠΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΡΠ±ΠΎΡΠ° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΡΠ΅Π²ΡΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΏΠΎ Π³ΠΎΠ»ΠΎΡΡ
The task of detecting vocal abnormalities is characterized by a small amount of available data for training, as a consequence of which classification systems that use low-dimensional data are the most relevant. We propose to use LASSO (least absolute shrinkage and selection operator) and BSS (backward stepwise selection) methods together to select the most significant features for the detection of vocal pathologies, in particular amyotrophic lateral sclerosis. Features based on fine-frequency cepstral coefficients, traditionally used in speech signal processing, and features based on discrete estimation of the autoregressive spectrum envelope are used. Spectral features based on the autoregressive process envelope spectrum are extracted using the generative method, which involves calculating a discrete Fourier transform of the report sequence generated using the autoregressive model of the input voice signal. The sequence is generated by the autoregressive model so as to account for the periodic nature of the Fourier transform. This improves the accuracy of the spectrum estimation and reduces the spectral leakage effect. Using LASSO in conjunction with BSS allowed us to improve the classification efficiency using a smaller number of features as compared to using the LASSO method alone.ΠΠ°Π΄Π°ΡΠ° Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ Π³ΠΎΠ»ΠΎΡΠΎΠ²ΡΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΌΠ°Π»ΡΠΌ ΠΎΠ±ΡΠ΅ΠΌΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
Π΄Π»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΡΠ΅Π³ΠΎ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠΈΠ΅ ΠΌΠ°Π»ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅, ΡΠ²Π»ΡΡΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΠΌΠΈ. ΠΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² LASSO (least absolute shrinkage and selection operator) ΠΈ BSS (backward stepwise selection) Π² ΠΎΡΠ±ΠΎΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΠΌΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄Π»Ρ Π·Π°Π΄Π°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π³ΠΎΠ»ΠΎΡΠΎΠ²ΡΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Π°ΠΌΠΈΠΎΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΊΠ»Π΅ΡΠΎΠ·Π°. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ΅Π»-ΡΠ°ΡΡΠΎΡΠ½ΡΡ
ΠΊΠ΅ΠΏΡΡΡΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ², ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠ΅ Π² ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠ΅ΡΠ΅Π²ΡΡ
ΡΠΈΠ³Π½Π°Π»ΠΎΠ², ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΎΠ³ΠΈΠ±Π°ΡΡΠ΅ΠΉ ΡΠΏΠ΅ΠΊΡΡΠ° Π°Π²ΡΠΎΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°. ΠΡΠΎΡΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΈΠ·Π²Π»Π΅ΠΊΠ°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡΡΠ΅Π³ΠΎ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ Π΄ΠΈΡΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π€ΡΡΡΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΎΡΡΠ΅ΡΠΎΠ², ΡΠ³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π°Π²ΡΠΎΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π²Ρ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³ΠΎΠ»ΠΎΡΠΎΠ²ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π°. ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π³Π΅Π½Π΅ΡΠΈΡΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠΎΠ±Ρ ΡΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΡΡ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π€ΡΡΡΠ΅. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΈ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΡΡΡΠ΅ΠΊΡ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅ΡΠΊΠΈ. ΠΡΠ±ΠΎΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² LASSO ΠΈ BSS ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΌΠ΅Π½ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ², ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° LASSO
- β¦