908 research outputs found

    The Plant Ontology: A common reference ontology for plants

    Get PDF
    The Plant Ontology (PO) (http://www.plantontology.org) (Jaiswal et al., 2005; Avraham et al., 2008) was designed to facilitate cross-database querying and to foster consistent use of plant-specific terminology in annotation. As new data are generated from the ever-expanding list of plant genome projects, the need for a consistent, cross-taxon vocabulary has grown. To meet this need, the PO is being expanded to represent all plants. This is the first ontology designed to encompass anatomical structures as well as growth and developmental stages across such a broad taxonomic range. While other ontologies such as the Gene Ontology (GO) (The Gene Ontology Consortium, 2010) or Cell Type Ontology (CL) (Bard et al., 2005) cover all living organisms, they are confined to structures at the cellular level and below. The diversity of growth forms and life histories within plants presents a challenge, but also provides unique opportunities to study developmental and evolutionary homology across organisms

    Modularization for the Cell Ontology

    Get PDF
    One of the premises of the OBO Foundry is that development of an orthogonal set of ontologies will increase domain expert contributions and logical interoperability, and decrease maintenance workload. For these reasons, the Cell Ontology (CL) is being re-engineered. This process requires the extraction of sub-modules from existing OBO ontologies, which presents a number of practical engineering challenges. These extracted modules may be intended to cover a narrow or a broad set of species. In addition, applications and resources that make use of the Cell Ontology have particular modularization requirements, such as the ability to extract custom subsets or unions of the Cell Ontology with other OBO ontologies. These extracted modules may be intended to cover a narrow or a broad set of species, which presents unique complications.

We discuss some of these requirements, and present our progress towards a customizable simple-to-use modularization tool that leverages existing OWL-based tools and opens up their use for the CL and other ontologies

    An improved ontological representation of dendritic cells as a paradigm for all cell types

    Get PDF
    The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’

    Atmospheric conditions and their effect on ball-milled magnesium diboride

    Full text link
    Magnesium diboride bulk pellets were fabricated from pre-reacted MgB2 powder ball milled with different amounts of exposure to air. Evidence of increased electron scattering including increased resistivity, depressed Tc, and enhanced Hc2 of the milled and heat treated samples were observed as a result of increased contact with air. These and other data were consistent with alloying with carbon as a result of exposure to air. A less clear trend of decreased connectivity associated with air exposure was also observed. In making the case that exposure to air should be considered a doping process, these results may explain the wide varibability of "undoped" MgB2 properties extant in the literature.Comment: Work presented at ASC 2006 in Seattl

    Sequence Ontology terminology for gene regulation

    Get PDF
    The Sequence Ontology (SO) is a structured, controlled vocabulary that provides terms and definitions for genomic annotation. The Gene Regulation Ensemble Effort for the Knowledge Commons (GREEKC) initiative has gathered input from many groups of researchers, including the SO, the Gene Ontology (GO), and gene regulation experts, with the goal of curating information about how gene expression is regulated at the molecular level. Here we discuss recent updates to the SO reflecting current knowledge. We have developed more accurate human-readable terms (also known as classes), including new definitions, and relationships related to the expression of genes. New findings continue to give us insight into the biology of gene regulation, including the order of events, and participants in those events. These updates to the SO support logical reasoning with the current understanding of gene expression regulation at the molecular level

    National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge

    Get PDF
    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease

    The Sequence Ontology: a tool for the unification of genome annotations

    Get PDF
    The Sequence Ontology ( SO) is a structured controlled vocabulary for the parts of a genomic annotation. SO provides a common set of terms and definitions that will facilitate the exchange, analysis and management of genomic data. Because SO treats part-whole relationships rigorously, data described with it can become substrates for automated reasoning, and instances of sequence features described by the SO can be subjected to a group of logical operations termed extensional mereology operators

    Nanoscale grains, high irreversibility field, and large critical current density as a function of high energy ball milling time in C-doped magnesium diboride

    Full text link
    Magnesium diboride (MgB2) powder was mechanically alloyed by high energy ball milling with C to a composition of Mg(B0.95C0.05)2 and then sintered at 1000 C in a hot isostatic press. Milling times varied from 1 minute to 3000 minutes. Full C incorporation required only 30-60 min of milling. Grain size of sintered samples decreased with increased milling time to less than 30 nm for 20-50 hrs of milling. Milling had a weak detrimental effect on connectivity. Strong irreversibility field (H*) increase (from 13.3 T to 17.2 T at 4.2 K) due to increased milling time was observed and correlated linearly with inverse grain size (1/d). As a result, high field Jc benefited greatly from lengthy powder milling. Jc(8 T, 4.2 K) peaked at > 80,000 A/cm2 with 1200 min of milling compared with only ~ 26,000 A/cm2 for 60 min of milling. This non-compositional performance increase is attributed to grain refinement of the unsintered powder by milling, and to the probable suppression of grain growth by milling-induced MgO nano-dispersions.Comment: 12 pages, 11 figure
    • 

    corecore