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Abstract

Rare disease diagnostics and disease gene discovery have been revolutionized by

whole‐exome and genome sequencing but identifying the causative variant(s) from

the millions in each individual remains challenging. The use of deep phenotyping of

patients and reference genotype−phenotype knowledge, alongside variant data such

as allele frequency, segregation, and predicted pathogenicity, has proved an

effective strategy to tackle this issue. Here we review the numerous tools that

have been developed to automate this approach and demonstrate the power of such

an approach on several thousand diagnosed cases from the 100,000 Genomes

Project. Finally, we discuss the challenges that need to be overcome if we are going

to improve detection rates and help the majority of patients that still remain without

a molecular diagnosis after state‐of‐the‐art genomic interpretation.
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1 | INTRODUCTION

Rare diseases (RDs) are estimated to affect a substantial proportion

of the population, estimated at 6% by one study although exact

numbers vary considerably depending on definitions of RD, method-

ologies, and sources of data (Ferreira, 2019; Haendel et al., 2019). In

addition, most RD patients undergo considerable medical odysseys

before a diagnosis (Splinter et al., 2018). Next‐generation sequencing

has started to transform RD diagnostics and research and numerous

programs have demonstrated improved diagnostic yields from large‐

scale whole‐exome and genome sequencing (WES and WGS) studies

as well as efficient identification of novel disease−gene associations:

Care4Rare (Dyment et al., 2015), Centers for Mendelian Genomics

(Posey et al., 2019), Undiagnosed Diseases Network (Splinter et al.,

2018). In particular, the UK 100,000 Genomes Project has

transformed the way that genomics is used in the UK's National
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Health Service (NHS) for RDs with a WGS now the standard genetic

test for many types of RD (Smedley et al., 2021).

Despite these successes, the causative mutations in the genomes

of the majority of patients remain undetected after WES or WGS

with diagnostics yields of 25%–50% (Clark et al., 2018; de Ligt et al.,

2012; Rauch et al., 2012; Tammimies et al., 2015; Y. Yang et al., 2013,

2014; Zhu et al., 2015). Numerous variants in an affected individual

typically remain after filtering a WES or WGS for variants using

standard strategies for RD candidacy. These include identifying

variants that: (i) are extremely rare according to population

sequencing database such as GnomAD (Karczewski et al., 2020),

(ii) segregate with disease in extended pedigrees, and (iii) are

predicted to be pathogenic using in silico algorithms such as, for

example, REVEL (Ioannidis et al., 2016), MVP (Qi et al., 2018),

PolyPhen‐2 (Adzhubei et al., 2010), CADD (Kircher et al., 2014),

MutationTaster (Schwarz et al., 2010), and SIFT (P. C. Ng & Henikoff,

2001). In high‐throughput and often under‐resourced healthcare

settings, the causative variant can often be overlooked in this

background. One increasingly adopted approach is to collect detailed

clinical phenotype data on each affected individual using the Human

Phenotype Ontology (HPO; Köhler et al., 2021) and compare that to

reference phenotypic knowledge associated with each candidate

variant and gene to narrow down the search further. The majority of

the projects described above have successfully used this approach to

improve diagnostic outcomes and many groups have built computa-

tional frameworks and pipelines to automate the phenotypic

comparisons (summarized in Table 1).

A whole range of computational algorithms has been deployed in

these tools incorporating natural language processing, machine

learning, and artificial intelligence including deep neural networks,

semantic similarity, and statistical probability approaches such as

likelihood ratios. Each of the published tools also varies in terms of

licensing, whether high‐throughput programmatic use is possible and

whether they support features such as human genome assembly

GRCh38 and family‐based analysis (Table 1). However, only a handful

of tools, including Exomiser, AMELIE, and LIRICAL, show evidence of

active maintenance with underlying databases updated since 2019.

Caution should be exercised when using the other tools as any of the

numerous, recently discovered new disease−gene associations will

likely not be detectable. Further illustrating the problems with long‐

term maintenance of academic software, many of the tools were no

longer available at their published locations and are therefore

not included in Table 1: PhenoPro (Z. Li, Zhang, et al., 2019),

OMIMExplorer (James et al., 2016), Phenoxome (Wu et al., 2019).

In this article, we first explore how phenotype‐driven methods

can improve diagnostic yields for RD using a large cohort of 4877

affected individuals who had received a molecular diagnosis (i.e.,

solved cases) from the 100,000 Genomes Project (Turnbull et al.,

2018) and a set of 184 causative structural variants and correspond-

ing phenotypic data curated from the literature. We then discuss

some of the future challenges in the field that need to be overcome

to address the overwhelming numbers of RD patients that still do not

receive a molecular diagnosis after the current standard of care

analysis of their WES and WGS samples.

2 | CLINICAL PHENOTYPES ARE CRITICAL
FOR AUTOMATED DETECTION OF RD
DIAGNOSES

We explored the potential of phenotype‐driven variant prioritization

software on 4877 molecularly diagnosed cases from the 100,000

Genome Project. This cohort represents diagnoses in some 1315

different genes for probands recruited under eligibility criteria for

257 broad clinical indications across all major branches of RD, for

example, cardiovascular, ciliopathies, dermatological, dysmorphic and

congenital abnormalities, endocrine, gastroenterological, growth,

hematological, hearing, metabolic, neurology and neurodevelopmen-

tal, ophthalmological, renal and urinary tract, respiratory, rheumato-

logical, skeletal, and finally tumor syndromes. Varying numbers of

affected and unaffected family members were recruited and

sequenced alongside the proband, bringing the total number of

genomes analyzed in this cohort to 10,887. HPO terms were

collected from the recruiting clinicians for each participant: median

of 4 positive terms and range 1−61 per participant. Previous studies

have shown that having more HPO terms per patient increases the

chances of a diagnostic variant being ranked top by phenotype‐

based, variant prioritization tools, but using more than five terms only

improves performance slightly (Thompson et al., 2019).

To analyze this large cohort we required software that could be

run on both GRCh37 and GRCh38 single nucleotide variant (SNV)/

insertion‐deletion (indel) Variant Call Format (VCF) files (Danecek

et al., 2011), offered local installation in the Genomics England

research environment, as well as high‐throughput, programmatic

querying. Exomiser and LIRICAL were the only two tools that

satisfied these conditions and the performance of both is shown in

Figure 1. Overall, Exomiser was able to prioritize 82.6%, 91.3%,

92.4%, and 93.6% of the 4877 diagnoses in the top, top 3, top 5, and

top 10 ranked candidates. This demonstrates the effectiveness of a

phenotype‐driven approach, across the whole breadth of RD, in

automatically detecting the diagnostic variant(s) from the several

million variants in the family WGS samples. Performance was similar

for the more challenging singleton samples (N = 1591), demonstrating

that sequencing of family members is not necessarily critical to

identify a disease‐causative variant when deep, clinical phenotypes

are collected. LIRICAL can currently only be run on singleton samples

and, despite showing slightly reduced performance relative to

Exomiser, still achieved efficient prioritization of diagnoses with

85.2% of diagnoses detected in the top 5 compared to 94.3% by

Exomiser for these samples. Exomiser is able to use local frequency

data available for the 100,000 Genomes Project to remove many

false‐positive variant calls, which likely explains much of this

difference in the recall. Where diagnoses were not recalled by the

automated software, this was due to variants being filtered out as
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they were flagged as low quality in the VCF (1%), had unusually high

minor allele frequencies (2%), or were incompletely penetrant (3%).

Exomiser, like most of the methods described above, combines

variant‐ and phenotype‐associated data into a single combined score

or probability (Figure 2). The variant‐based filtering and scoring utilize

minor allele frequencies from local and population sequencing

sources, in silico predicted pathogenicity, variant molecular conse-

quence for the gene, and segregation across affected and unaffected

members. The phenotype‐based scoring is obtained from the

semantic similarity between the proband's phenotype and the

F IGURE 1 Recall of 4877 known molecular
diagnoses from the 100,000 Genomes Project.
Exomiser and LIRICAL were run using their
standard settings and the percentage of molecular
diagnoses detected as the top hit, in the top 3, 5,
or 10 hits, or outside the top 10 are shown in the
stacked bars. Performance for Exomiser was
further broken down into whether the cases are
singletons, duos (one parent sequenced), trios
(both parents sequenced), or even larger family
structures, for example, siblings sequenced
as well.

F IGURE 2 Representation of Exomiser's phenotype‐based prioritization strategy. Exomiser takes as input a set of clinical phenotypes
encoded as HPO terms as well as a patient VCF file from WES/WGS sequencing followed by variant calling. Optionally, these VCF files can be
multisample, representing the sequences of other affected and unaffected family members, and further data on the pedigree is also supplied.
Under default settings, Exomiser then removes any variants that are not protein‐coding, above minor allele frequency thresholds of 0.1% for
dominant and 2% recessive modes of inheritance, and that do not segregate with the disease (except well‐supported pathogenic/likely
pathogenic ClinVar variants retained regardless of location or frequency). Remaining variants for each possible mode of inheritance are then
scored based on the rarity of the variant, predicted consequence, and the output of in silico pathogenicity prediction algorithms such as REVEL,
MVP, SIFT, PolyPhen‐2, and MutatationTaster. In parallel, existing phenotypic data for each gene associated with these candidate variants are
compared to the patient phenotypes, a phenotype score calculated, and combined with the variant score to produce a final Exomiser score that
can be used to rank the candidate variants. This phenotypic evidence comes from known disease associations (OMIM, Orphanet) and model
organism databases (MGI, IMPC, ZFIN) as well as nearby gene neighbors in the StringDB protein−protein association network.

1074 | JACOBSEN ET AL.



phenotypic profiles of human diseases and model organisms

associated with the gene or nearby neighbors in a protein−protein

interaction network.

The importance of combining both variant and phenotypic data is

seen in Figure 3a where the recall and precision for detecting the

diagnoses in the 4877 are shown across the full range of Exomiser's

variant, phenotype, and combined score cutoffs. Although a high

recall (0.92) can be obtained using a variant score threshold of 0.8,

the precision is poor (0.04) meaning an average of 25 variants per

case have to be reviewed by a clinical geneticist before a report can

be issued. In contrast, a phenotype score cutoff of 0.6 can be used to

achieve a better precision (0.15) but with a considerably reduced

recall (0.80). Combining both into the Exomiser score with a

threshold of 0.7 allows accurate recall (0.89) with reasonable

precision (0.15). Figure 3b summarizes how combining variant and

phenotype data into an Exomiser score is critical for efficient variant

prioritization with 82% of diagnoses recalled as the top hit compared

to only 33% and 55% using the variant and phenotype scores

respectively. In practice, we recommend users review the top 5

Exomiser candidates regardless of the score where a recall and

precision of 0.92 and 0.18, respectively, can be obtained (Figure 3c).

For many of the tools, the fact that they have not been upgraded

to GRCh38 since publication prevented their evaluation here, and

this is likely a reflection of the challenges of software maintenance in

academia. Although it is difficult to predict the relative performance

of the tools if they could be updated to work with the latest genome

assembly and disease data, we do expect that, in general, all tools

would demonstrate that a combined variant and phenotype‐based

approach is highly effective.

3 | CHALLENGES IN RD INTERPRETATION

Although most of the phenotype‐based variant prioritization meth-

ods have demonstrated impressive recall and precision on known

molecular diagnoses, there still remain a proportion of those

F IGURE 3 Exomiser performance on 4877 known molecular diagnoses from the 100,000 Genomes Project. (a) Recall and precision at
different score thresholds for the variant, phenotype, or combined Exomiser score. (b) Percentage of diagnoses detected as the top hit or in the
top 3 or 5 hits when ranking by variant, phenotype to combined Exomiser score. (c) Recall and precision when ranking by Exomiser combined
score as well as additional score thresholds.

JACOBSEN ET AL. | 1075



diagnoses that are not detected at all, for example, ~5% in the

100,000 Genomes Project benchmarking of Exomiser, as well as the

much larger problem of most patients still not receiving a molecular

diagnosis after a comprehensive analysis of their WES/WGS data, for

example, 75% of 100,000 Genomes Project probands (Smedley et al.,

2021). Better methods are needed to detect these missed diagnoses

that improve: (i) the detection and prioritization of noncoding and

structural variants, (ii) identify causative variants in genes that have

not previously been associated with human disease, and (iii) deal with

more complex genetic scenarios such as incomplete penetrance.

Improvements are also required to allow easier reinterpretation of

unsolved cases, simpler sharing of phenotype data, and diagnostics in

a prenatal context. Here we will discuss the latest advances in these

areas.

3.1 | Prioritization of noncoding variants

A substantial proportion of RD diagnoses are likely to involve

noncoding variants, for example, 4% of molecular diagnoses reported

in the 100,000 Genomes Project pilot paper, demonstrating that

WGS can accurately detect such diagnoses (Smedley et al., 2021).

However, most pipelines are not routinely pursuing such diagnoses,

largely due to the problem of overwhelming numbers of variants to

interpret and validate. Phenotype‐based algorithms such as Geno-

miser (Smedley et al., 2016, part of the Exomiser framework) can

automatically highlight candidate variants across the whole genome

including enhancers, promoters, untranslated regions, and introns;

previous benchmarking revealed that 77% of known noncoding

molecular diagnoses could be recalled as the top candidate in WGS

samples (Smedley et al., 2016). However, the issue of how to

efficiently perform functional validation of novel noncoding variants

limits the wider application of such approaches.

Researchers have therefore focussed their efforts on variants

that change mRNA splicing as these are much more amenable to

high‐throughput validation through techniques such as transcrip-

tomics. The simplest definition of a splice variant includes variants

that affect the most conserved AG/GT dinucleotides of the intron

termini. However, variants at other splice site positions or variants

located outside of the splice sites were also shown to cause defective

splicing by introducing cryptic splice sites or by disrupting splicing

regulatory element binding sites (Boichard et al., 2008). Recent

algorithms such as SQUIRLS (Danis et al., 2021b) and SpliceAI

(Jaganathan et al., 2019) have revolutionized the detection of such

variants in WGS. Being able to integrate these new variant‐based

algorithms into the phenotype‐based tools promises to deliver many

additional diagnoses, as in some genes up to 50% of all disease‐

causing variants are splice variants (Ars et al., 2000). Exomiser allows

new variant deleteriousness or pathogenicity algorithms to be

immediately incorporated into the analysis as tabix‐format score

files. Initial exploration of this approach using SpliceAI and SQUIRLS

on unsolved cases from the 100,000 Genomes Project has revealed

tens of thousands of predicted pathogenic, cryptic splice variants

within genes known to be associated with the patient's condition. It

can be anticipated that intersecting these candidate variants with

large‐scale transcriptomic analysis will allow the detection of many

new molecular diagnoses. The direct integration of transcriptomic

analysis into existing phenotype‐based variant prioritization software

would also make this process much more efficient and powerful,

building on existing gene prioritization approaches such as GADO

(Deelen et al., 2019).

3.2 | Prioritization of structural variants

Similarly, many unsolved RD cases are thought to involve structural

variants (SVs), either alone or in combination with SNVs/indels. Even

with the current limitations of calling SVs from short‐read WGS

samples, 8% of the diagnoses reported by the 100,000 Genomes

Project involved SVs (Smedley et al., 2021).

The challenge with SV prioritization ultimately stems from the

primary technological challenges of sequencing, assembly, and calling

of structural variants compared to short sequence variants, especially

using short‐read technologies (Mahmoud et al., 2019). SV callers for

both long‐ and short‐read technologies have varied performance

depending on the class of SV they are calling, with insertions being a

particularly troublesome class for reliable detection (Kosugi et al.,

2019). In general, long‐read sequencing offers improved detection of

SVs. However, while whole‐genome short‐read sequencing costs

have dramatically reduced over the past decade, long‐read costs are

still beyond what would be tolerated for routine diagnosis.

While the VCF specification has support for describing SVs, it is

less well‐specified compared to sequence variants, with several open

tickets (https://github.com/samtools/hts‐specs/issues/544) under

discussion for v4.4. Moreover, callers often follow the specification

in an idiosyncratic manner, which makes it exceptionally difficult for

variant prioritization software to reliably utilize the calls. One of the

most powerful metrics for judging variant pathogenicity is variant

frequency where pathogenic variants are often absent or present at

very low frequencies in databases such as gnomAD. GnomAD‐SV

(Collins et al., 2020) now offers a reference database produced from

high‐coverage sequencing to perform this task also for SVs.

However, the recent gnomAD‐SV data set was created from

14,891 individuals and is far smaller than the original gnomAD

SNV/indel data set with around 140,000 individuals. This reduces the

filtering power based on variant frequency of gnomAD‐SV. Other

resources such as DECIPHER, DGV, and dbVAR also contain SVs but

data such as SV type, insertion length, and copy number are not

always recorded consistently within or between resources. A further

problem with trying to utilize these resources is that SVs are harder

to categorize, far longer, and often have imprecise boundaries when

compared to small variants, and are therefore significantly harder to

look up in reference databases. Guidelines for reporting clinical

pathogenicity of structural variants have only been introduced

recently (Riggs et al., 2020) compared to the long‐established ones

for SNV variants (Richards et al., 2015), leading to fewer high‐quality

1076 | JACOBSEN ET AL.
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clinical assertions in ClinVar (Landrum et al., 2018) for tools to

reference.

Despite these challenges, several phenotype‐based prioritization

tools have recently emerged that offer SV prioritization. SvAnna

(Danis et al., 2021a) focuses on SVs called from long‐read

technologies. AnnotSV (Geoffroy et al., 2021) in contrast has a

short‐read focus. The latest release of Exomiser (13.0.0) allows

phenotype‐based prioritization of SVs alongside SNVs/indels so that

the impact of the SVs on the coding regions of one or more genes is

assessed alongside any rare, predicted damaging SNVs/indels present

under various segregation models for each affected individual.

The ability of Exomiser to prioritize known molecular diagnoses

involving an SV is shown in Figure 4. Previously described

phenopackets (https://phenopacket‐schema.readthedocs.io/en/late

st/index.html) representing curated phenotypic and pedigree data

from the literature (Danis et al., 2021a) were used as input to

Exomiser alongside corresponding VCFs containing the curated

variant(s) added to a control WGS VCF file based on either short‐

or long‐read technologies. The former used an Illumina short‐read

sample with SVs called using Manta and Canvas. For the long‐read

benchmarking we used a Genome in a Bottle (GIAB) sample

generated by PacBio sequencing and pbsv calling (ftp://ftp‐trace.

ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/PacBio_pbs

v_05212019/HG002_GRCh38.pbsv.vcf). Exomiser was able to prior-

itize 74% of the SV diagnoses as the top‐ranked candidate and 89%

in the top 5 for the short‐read samples. The long‐read samples were

more problematic with performance dropping to 61% and 78% for

the top and top 5 ranked candidates, but still showing relatively

effective prioritization of SV diagnoses. Only 14 SV diagnoses were

completely missed by Exomiser: nine involving SVs that disrupt

noncoding regions which are not currently handled and five

unspecified breakend (BND)‐type SVs that again are not currently

supported. Twenty‐eight of the 184 curated known SV diagnoses

involve an SNV/indel in compound heterozygosity with an SV and in

all cases Exomiser was able to detect both variants and prioritize the

diagnosis effectively in the top 3 ranked candidates. The same

phenopackets have already been assessed for SvAnna and AnnotSV

using a different set of long‐read, pbsv called VCFs and showed 61%

and 86% in the top and top 5 candidates for SvAnna and 60% and

65% for AnnotSV (Danis et al., 2021a).

3.3 | Incomplete penetrance

Exomiser and Phen‐Gen are the only phenotype‐based variant

prioritization tools to offer the option of allowing for incomplete

penetrance. In Exomiser 13.0.0, the user can configure the analysis to

retain variants in unaffected family members instead of removing

them as part of the standard filtering pipeline. Phen‐Gen has a

stringency setting to adjust the level of penetrance. Allowing for

incomplete penetrance obviously leads to more candidates to review

per case. Both Exomiser and Phen‐Gen apply these settings across

the genome and future improvements to restrict to a curated set of

genes with known incomplete penetrance would reduce the number

of candidates and improve performance. We were able to benchmark

Exomiser on 35 families from the 100,000 Genomes Project with

incompletely penetrant molecular diagnoses and show that 54% were

still detected as the top‐ranked candidate, 77% in the top 3 with a

further 14% found outside the top 10. Phen‐Gen benchmarking was

not possible on these samples as GRCh38 analysis is not enabled.

Without accounting for the incomplete penetrance, none of these

diagnoses would have been detected.

3.4 | Novel disease−gene discovery through
phenotype‐based methods

The usual route for disease gene discovery involves identifying

pathogenic/likely pathogenic variants in the same gene in several

unrelated families with the same phenotype and then performing

F IGURE 4 Exomiser recall of 184 known SV
diagnoses described in the literature. Previously
described phenopackets representing known SV
diagnoses curated from the literature were used
as input to Exomiser along with short‐ or long‐
read‐based SV VCF files. Exomiser was run using
standard settings and the percentage of
diagnoses detected as the top hit, in the top 3, 5,
or 10 hits, or outside the top 10 are shown in the
stacked bars.
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functional validation. The phenotype‐based tools that incorporate

model organism data, pathway, and/or protein‐protein network

approaches can prioritize variants in genes that have not previously

been associated with human disease and potentially support this

functional validation step. This is enabled by making use of existing

knowledge, for example, from large‐scale efforts such as the

International Mouse Phenotyping Consortium (Lloyd et al., 2020)

that are characterizing the function of every protein‐coding gene

through systematic mouse knockouts and phenotyping. For example,

the Children's Hospital Los Angeles demonstrated the successful

discovery of diagnoses in novel disease genes using a semi‐

automated pipeline involving Exomiser (Ji et al., 2019). In another

example, ANKRD17 was identified as a candidate gene for cases of

intellectual disability in the 100,000 Genomes Project through the

identification of highly ranked Exomiser candidate de novo variants

based on protein−protein interaction evidence. Subsequent identifi-

cation of further cases worldwide and functional characterization

have now confirmed this association (Chopra et al., 2021).

3.5 | Reinterpretation of unsolved cases

The power of reinterpretation to diagnose previously unsolved cases

based on new knowledge of disease−gene associations has been

widely reported in the last few years (Matalonga et al., 2021).

Phenotype‐based, variant prioritization tools offer an ideal mecha-

nism to implement efficient reinterpretation as long as the software is

fast, easy to run, and, most critically, kept up‐to‐date. As we

discussed at the beginning, only a few academic tools fulfill these

criteria and a number of commercial solutions have emerged with

similar offerings. However, the free, open‐source tools such as

AMELIE, LIRICAL and Exomiser that do offer up‐to‐date

reinterpretation have an attractive range of features:

(i) programmatic access allowing high‐throughput analysis and, in

the case of Exomiser and LIRICAL, simple, local installation so

security around data transfer is not an issue (local reinstallation

of latest versions required though). AMELIE offers the advantage

of natural language processing of the latest literature to identify

reference genotype to phenotype knowledge. Other tools such

as Exomiser and LIRICAL rely on the curation of the latest

disease−gene associations by OMIM and Orphanet and the

associated phenotypes by the HPO team before this knowledge

is available to the software;

(ii) simple configuration, including sensible presets for exome‐ or

genome‐based analysis in the case of Exomiser, so only the bare

minimum of patient‐level information needs to be entered;

(iii) standardized input using VCF files, HPO terms, and, in the case

of Exomiser and LIRICAL, compatibility with the Global Alliance

for Genomics and Health (GA4GH) approved Phenopacket

standard that will allow future direct connection to electronic

health record (EHR) systems;

(iv) fast run times (<30 s for a WES, <5min for a WGS) making

regular reinterpretation feasible;

(v) JavaScript Object Notation (JSON) output for incorporation into

bioinformatics pipelines and, in the case of Exomiser and

LIRICAL, user‐friendly HyperText Markup Language (HTML)

output.

3.6 | Standardized phenotype representation

Phenotype‐driven RD genome analysis tools have benefited en-

ormously from standardized formats for capturing genomic variation

from next‐generation sequencing technologies (VCF), yet until

recently had no analog for describing patient phenotype. While the

Human Phenotype Ontology (Köhler et al., 2021) has become the

accepted standard for capturing patient phenotype from deep‐

phenotyping for use in analysis, there is no standardized way of

conveying this information to bioinformatics tools. Most tools rely on

a simple list of phenotype terms or a disease identifier (e.g., from

OMIM (Amberger et al., 2019), Orphanet (Pavan et al., 2017), or

MONDO (http://obofoundry.org/ontology/mondo)) to try and con-

vey this information, but this method cannot convey a complete

description of an individual's phenotype including modifiers such as

severity, laterality, and age of onset for each phenotype as well as

their progression over time. The GA4GH Phenopacket (https://

phenopacket‐schema.readthedocs.io/en/v2/) aims to solve this by

providing a standardized, structured format for describing

patient‐level phenotypic features, allowing for a rich description

of each feature including the absence, severity and time of onset.

Since its initial release, several tools (LIRICAL, SvAnna, Exomiser,

Phen2Gene (Zhao et al., 2020)) support the standard which offers

significantly increased portability of phenotype data between

these tools.

3.7 | Interpretation of prenatal cases

While becoming routine for pediatric and adult diagnosis, the use of

phenotype‐driven RD analysis for prenatal diagnosis is a developing

area. Currently, the HPO has 151 terms in the subhierarchy starting

from Abnormality of prenatal development or birth [HP:0001197]. Out

of the 199,197 annotations to 7902 Mendelian diseases currently

present in the HPO, roughly 0.5% refer to terms from the

subhierarchy HP:0001197, such as Fetal distress [HP:0025116] or

Short fetal humerus length [HP:0011429]. However, current knowl-

edge of the prenatal manifestations of Mendelian disease remains

limited. Prenatal genomic testing is becoming increasingly common

for fetuses with suspected Mendelian disease but the interpretation

of expanded prenatal sequencing is reliant on deeper fetal

phenotyping (Gray et al., 2019). The HPO project is currently

conducting a series of workshops in this area to expand the depth

and breadth of relevant coverage.
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4 | CONCLUSIONS

WES and WGS are now widely used in both diagnostic and research

settings. A large driver for the successful adoption of these strategies

has been the collection of deep phenotype data using HPO terms and

software allowing automated prioritization of variants. Without these

tools, clinicians and researchers would be overwhelmed, in most

cases, by the sheer number of candidate variants to interpret.

Phenotype‐driven, RD diagnosis is now a part of routine clinical

practice in the United Kingdom and many other healthcare systems.

There are still numerous challenges to overcome before we can

efficiently deliver on the promise of genomics to fully transform

the diagnosis and eventual treatment of RD. Further development

and adoption of standards are needed to connect EHR systems and

the variant prioritization tools. More research and development of

the tools are needed to identify the overlooked molecular

diagnoses that are present in existing genomic samples as well as

those that will emerge through further advances in omics

technologies. However, we have come to a remarkable distance

in the last decade since the first reported WES successes (S. B. Ng

et al., 2010), and we expect considerable advances in all these

areas in the next few years.
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