981 research outputs found

    A numerical and experimental investigation of vibratory bowl feeders

    Get PDF
    Vibratory bowl feeders are widely used in automation processes for the storage, feeding and orientation of identical components for presentation to workstations or other mechanical handling devices. The investigation described here has been directed at modelling the dynamiC behaviour of vibratory bowl feeders, both to improve understanding of their behaviour, and to facilitate improvements in their design. The work undertaken has involved the following stages: i) A numerical model for the prediction of the eigenvalues and eigenvectors of the bowl feeder was developed, modelling the structure as a lumped parameter eight degree-of-freedom system; ii) The natural frequencies and mode shapes predicted by the model were compared with those obtained from experimental modal analysis. There was good agreement for the first three natural frequencies. Differences in the higher frequency modes indicated an overconstrained model which could be accounted for by the flexural vibration of the bowl; iii) A numerical model of the forced response of a bowl feeder when driven by a harmonic excitation was developed using a spreadsheet package, and verified experimentally; iv) The spreadsheet package was developed further, varying the geometric parameters of the bowl and springs over specified ranges. Changes in spring angles were investigated experimentally to verify the predicted values; v) A customised design tool was developed using the spreadsheet package to enable engineers to investigate the behaviour of different configuration feeders; vi) An investigation of the causes of dead-spots was undertaken. These were shown to be due to the asymmetrical arrangement of the springs and electromagnetic coil relative to each other; and vii) Solutions proposed to the problem of dead-spots were the use of four spring banks instead of three, and the specification of an annular shaped pole piece for the electromagnetic coil

    High Pressure Angle Spur Gears for Epicyclic Gear Trains

    Get PDF
    Advanced in engineering technology have resulted in increased gearing performances. The use of high power density transmission systems such as epicyclic gear trains is the way to achieve the goal reducing the overall volume and mass compared with traditional configurations. Gears are the main component of the transmissions because they play the crucial role of transmitting the power from the input to the output with a defined ratio. In terms of gear performances, tooth geometry has a direct influence on load carrying capacity: increase the pressure angle modifies the tooth profile with a direct influence on bending and contact stress. To test the benefits of high pressure angles gears in epicyclic transmissions, four different epicyclic systems with same boundary design conditions have been modelled. The reference pressure angle have been varied from 20° to 35° and other gear parameters such as profile shift coefficient, addendum and dedendum length have been modified consequently to match the design requirements. The results show that increasing the pressure angle has a reductive effect on contact and bending stresses. Using high pressure angle gears in epicyclic transmissions has a beneficial effect on tensile stresses but is unfavourable for the compressive ones. Moreover, it has been seen that pressure angle effect might be enhanced or nullified if other modifications such as profile shift are used concurrently

    : AVERT Project (Adaptation of Vehicle Environmental performance by Remote sensing and Telematics ) a FORESIGHT Vehicle Programme

    Get PDF
    Implementing measures that can maintain, as well as improve air quality is a constant challenge faced by local authorities, especially in metropolitan cities. The AVERT, EPSRC/DTI link project, led by Samuel and Morrey of Oxford Brookes University, were tasked at identifying and proposing a new strategy to limit the amount of pollutants from vehicles dynamically using remote sensing and telematics. Firstly, it established the magnitude of real-world emission levels from modern passenger vehicles using a newly developed drive-cycle. Secondly, it demonstrated a broad framework and limitations for using existing on-board computer diagnostic systems (OBD) and remote sensing schemes for the identification of gross polluting vehicles. Finally, it provided a strategy for controlling the vehicle to meet air pollution requirements. The outcomes had direct impact on Government policy on “Cars of the Future”, roadside emission monitoring, and the business strategies for both the Go-Ahead Group and Oxonica Ltd

    A comparison of one and two-sided Krylov-Arnoldi projection methods for fully coupled, damped structural-acoustic analysis

    Get PDF
    The two-sided second-order Arnoldi algorithm is used to generate a reduced order model of two test cases of fully coupled, acoustic interior cavities, backed by flexible structural systems with damping. The reduced order model is obtained by applying a Galerkin-Petrov projection of the coupled system matrices, from a higher dimensional subspace to a lower dimensional subspace, whilst preserving the low frequency moments of the coupled system. The basis vectors for projection are computed efficiently using a two-sided second-order Arnoldi algorithm, which generates an orthogonal basis for the second-order Krylov subspace containing moments of the original higher dimensional system. The first model is an ABAQUS benchmark problem: a 2D, point loaded, water filled cavity. The second model is a cylindrical air-filled cavity, with clamped ends and a load normal to its curved surface. The computational efficiency, error and convergence are analyzed, and the two-sided second-order Arnoldi method shows better efficiency and performance than the one-sided Arnoldi technique, whilst also preserving the second-order structure of the original problem

    Abelian gauge theories on compact manifolds and the Gribov ambiguity

    Full text link
    We study the quantization of abelian gauge theories of principal torus bundles over compact manifolds with and without boundary. It is shown that these gauge theories suffer from a Gribov ambiguity originating in the non-triviality of the bundle of connections whose geometrical structure will be analyzed in detail. Motivated by the stochastic quantization approach we propose a modified functional integral measure on the space of connections that takes the Gribov problem into account. This functional integral measure is used to calculate the partition function, the Greens functions and the field strength correlating functions in any dimension using the fact that the space of inequivalent connections itself admits the structure of a bundle over a finite dimensional torus. The Greens functions are shown to be affected by the non-trivial topology, giving rise to non-vanishing vacuum expectation values for the gauge fields.Comment: 33 page

    Zika Virus-induced Acute Myelitis and Motor Deficits in Adult Interferon αβ/γ Receptor Knockout Mice

    Get PDF
    Zika virus (ZIKV) has received widespread attention because of its effect on the developing fetus. It is becoming apparent, however, that severe neurological sequelae, such as Guillian-Barrë syndrome (GBS), myelitis, encephalitis, and seizures can occur after infection of adults. This study demonstrates that a contemporary strain of ZIKV can widely infect astrocytes and neurons in the brain and spinal cord of adult, interferon α/β receptor knockout mice (AG129 strain) and cause progressive hindlimb paralysis, as well as severe seizure-like activity during the acute phase of disease. The severity of hindlimb motor deficits correlated with increased numbers of ZIKV-infected lumbosacral spinal motor neurons and decreased numbers of spinal motor neurons. Electrophysiological compound muscle action potential (CMAP) amplitudes in response to stimulation of the lumbosacral spinal cord were reduced when obvious motor deficits were present. ZIKV immunoreactivity was high, intense, and obvious in tissue sections of the brain and spinal cord. Infection in the brain and spinal cord was also associated with astrogliosis as well as T cell and neutrophil infiltration. CMAP and histological analysis indicated that peripheral nerve and muscle functions were intact. Consequently, motor deficits in these circumstances appear to be primarily due to myelitis and possibly encephalitis as opposed to a peripheral neuropathy or a GBS-like syndrome. Thus, acute ZIKV infection of adult AG129 mice may be a useful model for ZIKV-induced myelitis, encephalitis, and seizure activity

    Existence of immersed spheres minimizing curvature functionals in compact 3-manifolds

    Full text link
    We study curvature functionals for immersed 2-spheres in a compact, three-dimensional Riemannian manifold M. Under the assumption that the sectional curvature of M is strictly positive, we prove the existence of a smoothly immersed sphere minimizing the L^{2} integral of the second fundamental form. Assuming instead that the sectional curvature is less than or equal to 2, and that there exists a point in M with scalar curvature bigger than 6, we obtain a smooth 2-sphere minimizing the integral of 1/4|H|^{2} +1, where H is the mean curvature vector

    Memantine Treatment Reduces the Incidence of Flaccid Paralysis in a Zika Virus Mouse Model of Temporary Paralysis With Similarities to Guillain-Barré Syndrome

    Get PDF
    Clinical evidence suggests that Zika virus contributes to Guillain-Barré syndrome that causes temporary paralysis. We utilized a recently described Zika virus mouse model of temporary flaccid paralysis to address the hypothesis that treatment with an N-methyl-D-aspartate receptor antagonist, memantine, can reduce the incidence of paralysis. Aged interferon alpha/beta-receptor knockout mice were used because of their sublethal susceptibility to Zika virus infection. Fifteen to twenty-five percent of mice infected with a Puerto Rico strain of Zika virus develop acute flaccid paralysis beginning at days 8–9 and peaked at days 10–12. Mice recover from paralysis within a week of onset. In two independent studies, twice daily oral administration of memantine at 60 mg/kg/day on days 4 through 9 after viral challenge significantly reduced the incidence of paralysis. No efficacy was observed with treatments from days 9 through 12. Memantine treatment in cell culture or mice did not affect viral titers. These data indicate that early treatment of memantine before onset of paralysis is efficacious, but treatments beyond the onset of paralysis were not efficacious. The effect of this N-methyl-D-aspartate receptor antagonist on the incidence of Zika virus-induced paralysis may provide guidance for investigations on the mechanism of paralysis

    Respiratory Insufficiency Correlated Strongly with Mortality of Rodents Infected with West Nile Virus

    Get PDF
    West Nile virus (WNV) disease can be fatal for high-risk patients. Since WNV or its antigens have been identified in multiple anatomical locations of the central nervous system of persons or rodent models, one cannot know where to investigate the actual mechanism of mortality without careful studies in animal models. In this study, depressed respiratory functions measured by plethysmography correlated strongly with mortality. This respiratory distress, as well as reduced oxygen saturation, occurred beginning as early as 4 days before mortality. Affected medullary respiratory control cells may have contributed to the animals' respiratory insufficiency, because WNV antigen staining was present in neurons located in the ventrolateral medulla. Starvation or dehydration would be irrelevant in people, but could cause death in rodents due to lethargy or loss of appetite. Animal experiments were performed to exclude this possibility. Plasma ketones were increased in moribund infected hamsters, but late-stage starvation markers were not apparent. Moreover, daily subcutaneous administration of 5% dextrose in physiological saline solution did not improve survival or other disease signs. Therefore, infected hamsters did not die from starvation or dehydration. No cerebral edema was apparent in WNV- or sham-infected hamsters as determined by comparing wet-to-total weight ratios of brains, or by evaluating blood-brain-barrier permeability using Evans blue dye penetration into brains. Limited vasculitis was present in the right atrium of the heart of infected hamsters, but abnormal electrocardiograms for several days leading up to mortality did not occur. Since respiratory insufficiency was strongly correlated with mortality more than any other pathological parameter, it is the likely cause of death in rodents. These animal data and a poor prognosis for persons with respiratory insufficiency support the hypothesis that neurological lesions affecting respiratory function may be the primary cause of human WNV-induced death

    Ghost points in inverse scattering constructions of stationary Einstein metrics

    Full text link
    We prove a removable singularities theorem for stationary Einstein equations, with useful implications for constructions of stationary solutions using soliton methods
    • …
    corecore