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Abstract Zika virus (ZIKV) has received widespread at-
tention because of its effect on the developing fetus. It is
becoming apparent, however, that severe neurological se-
quelae, such as Guillian-Barrë syndrome (GBS), myelitis,
encephalitis, and seizures can occur after infection of
adults. This study demonstrates that a contemporary
strain of ZIKV can widely infect astrocytes and neurons
in the brain and spinal cord of adult, interferon α/β
receptor knockout mice (AG129 strain) and cause pro-
gressive hindlimb paralysis, as well as severe seizure-
like activity during the acute phase of disease. The se-
verity of hindlimb motor deficits correlated with in-
creased numbers of ZIKV-infected lumbosacral spinal
motor neurons and decreased numbers of spinal motor
neurons. Electrophysiological compound muscle action
potential (CMAP) amplitudes in response to stimulation
of the lumbosacral spinal cord were reduced when obvi-
ous motor deficits were present. ZIKV immunoreactivity
was high, intense, and obvious in tissue sections of the
brain and spinal cord. Infection in the brain and spinal
cord was also associated with astrogliosis as well as T
cell and neutrophil infiltration. CMAP and histological
analysis indicated that peripheral nerve and muscle func-

tions were intact. Consequently, motor deficits in these
circumstances appear to be primarily due to myelitis and
possibly encephalitis as opposed to a peripheral neurop-
athy or a GBS-like syndrome. Thus, acute ZIKV infec-
tion of adult AG129 mice may be a useful model for
ZIKV-induced myelitis, encephalitis, and seizure activity.
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Abbreviations
ZIKV Zika virus
GBS Guillain-Barré syndrome
A129 and IFNAR−/−

mice
Interferon type 1 (αβ)
receptor knockout mice

AG129 Interferon types 1 and 2 (αβ/γ) receptor
knockout mice

DPI Days post-infection
CMAP Compound muscle action potential
VPS Viral paresis scale
PBS Phosphate buffered saline
NMJ Neuromuscular junction
NF-H Neurofilament-H
TMR Tetramethylrhodamine
α-btx α-Bungarotoxin
PBST PBS with 0.5% Triton

X-100
ROI Region of interest
ChAT Choline acetyltransferase
MBP Myelin basic protein
ir Immunoreactive
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Introduction

Zika virus (ZIKV) is an emerging flavivirus that has received
widespread attention because of its effect on the developing
fetus. In utero infections cause congenital defects, most nota-
bly microcephaly along with other deformities (Schuler-
Faccini et al. 2016). While ZIKV infection of adults generally
produces only a mild disease, it is becoming apparent that, as
with other flavivirus infections, severe neurological sequelae
can occur. Recent outbreaks have been associated with higher
incidences of peripheral neuropathies such as Guillian-Barrë
syndrome (GBS) (Brasil et al. 2016; Cao-Lormeau et al. 2016;
Cardoso et al. 2015; Samarasekera and Triunfol 2016) and
other neurological diseases such as myelitis (Anaya et al.
2017; Dirlikov et al. 2016;Mecharles et al. 2016), encephalitis
(Carteaux et al. 2016; Nicastri et al. 2016; Soares et al. 2016),
seizures (Asadi-Pooya 2016), and various ophthalmological
conditions (Pastula et al. 2016; Smith et al. 2016). This is
not surprising considering that related flaviviruses such as
West Nile virus (WNV) and Japanese encephalitis virus
(Solomon et al. 1998) can cause myelitis and motor deficits
(Sejvar et al. 2003). Given the emerging nature of ZIKV, how-
ever, it is likely that we do not fully understand the acute and
long-term consequences of ZIKV infection on the nervous
system. Therefore, investigating the pathobiology of ZIKV
in animal models will help to understand the potential for
ZIKV to cause neurological disease in human subjects. We
focus herein on adult models because ZIKV-related motor
deficits have been primarily associated with adult infection,
as opposed to in utero infection (Anaya et al. 2017; Dirlikov
et al. 2016; Mecharles et al. 2016).

Prior to the 2015 ZIKVoutbreak, a few animal models of
ZIKV infection existed, but infection of rodents was largely
non-productive unless a lab strain of the virus that had un-
dergone several serial passages in mice was used (Dick
1952). After the recent outbreaks, efforts to develop animal
models with more clinically relevant isolates of the virus
have been renewed. A rapid series of publications found that
adult mice that lack type 1 (αβ; A129 and IFNAR−/− strains)
or types 1 and 2 (αβ/γ; AG129 strain) interferon receptors
are susceptible to lethal infection (Aliota et al. 2016; Lazear
et al. 2016; Manangeeswaran et al. 2016; Rossi et al. 2016;
Zmurko et al. 2016). These models may have some relevance
to human ZIKV infections in that, like many viruses, ZIKV
gains advantages in human hosts by inhibiting interferon
responses (Best 2017; Bowen et al. 2017; Schulz and
Mossman 2016). Because viruses may not be able to inhibit
mouse-specific interferon pathways (Aguirre et al. 2012),
blocking them by other means, as in AG129 mice, may more
closely mimic what happens in humans. Although AG129
mice are deficient in innate immune responses, they do elicit
acquired immune responses, such as vaccine-elicited protec-
tive immunity (Sumathy et al. 2017; Weger-Lucarelli et al.

2017). While complete knockout of the interferon responses
produces a more severe disease in mice, it can provide in-
sights into what happens when ZIKV gains access to the
adult central nervous system (CNS). Besides a lethal infec-
tion, these mice manifest neurological symptoms such as
Btoe walking,^ tremors, loss of balance, paralysis, and
hunched posture (Aliota et al. 2016; Lazear et al. 2016;
Manangeeswaran et al. 2016; Rossi et al. 2016).

To better understand the consequences of ZIKV infection
of the adult nervous system and the pathobiology of the
resulting neurological disease, we infected AG129 mice with
a contemporary, low-passage ZIKV isolate and evaluated the
neurological motor deficits occurring during the acute phase
of the disease.We characterized the onset, course, and severity
of behavioral hindlimb deficits and used electrophysiology
and immunohistochemistry (IHC) to determine if such deficits
are due primarily to myelitis, peripheral neuropathy, myositis,
or encephalitis. This included histological analysis of motor
cortex, spinal cord, peripheral nerve, and muscle.

Materials and methods

Animals

Male and female AG129 mice (van den Broek et al. 1995)
were bred in-house in sterilized cages and maintained in a 12/
12 light cycle. Mice were randomly assigned to treatment
groups based on weight, gender, and baseline measurements.

Virus

A Puerto Rican isolate of ZIKV (PRVABC59, Human/2015/
Puerto Rico, GenBank KU501215) was obtained from BEI
Resources (Cat No. NR-50240, Lot No. 64112564). The cer-
tificate of analysis confirmed that the sequence of this stock
(GenBank KX087101) is 99% identical to PRVABC59
(GenBank KU501215). The BEI stock was passaged two
times in Vero 76 cells to make a stock with a titer of
2 × 107 pfu/mL for use in all experiments. Infected cells were
frozen once, thawed, centrifuged to remove cell debris, and
aliquoted in frozen stocks. Dilutions were made in minimal
essential medium supplemented with 50 μg/mL gentamicin to
deliver 2000 pfu subcutaneously in the inguinal area on the
right side in a volume of 0.1 mL. Uninfected cells were pre-
pared and diluted similarly for sham infections.

Experiment no. 1

The purpose of this experiment was to assess the time course
and severity of motor deficits and collect tissues for histolog-
ical analysis. Seventy-two to 75-day-old (10.5 weeks) male
and female AG129 mice were infected with ZIKV (n = 6
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females and 4 males) or sham (n = 3 females and 2 males)
inoculum and monitored for weight loss and survival (Fig. 1).
Behavioral motor assessments were performed before infec-
tion (baseline); once after infection, but before symptom onset
(4 days post-infection (DPI)); and twice a day after symptom
onset (9–15 DPI) (Fig. 2). Seizure-like activity observed dur-
ing behavioral assessments was also noted (Fig. 3). Videos of
motor deficits and seizure-like activity were obtained to pro-
vide examples of symptoms seen. Observations were made by
researchers who were blind to the infection status of each
group. Moribund mice were perfused for histological analysis
of the brain, lumbosacral spinal cord, sciatic nerve, and gas-
trocnemius muscle.

Experiment no. 2

The purpose of this experiment was to collect electrophysio-
logical data on mice with motor deficits. Male and female
AG129 mice aged 120–123 days old (17 weeks) or 62 days
old (9 weeks) were divided into groups. The ZIKV-infected
group contained three males (17 weeks old), four males
(9 weeks old), and four females (9 weeks old). The sham-
infected group contained twomales (17 weeks old), twomales
(9 weeks old), and two females (9 weeks old). Mice were
monitored for weight loss and survival. Behavioral assess-
ments were performed before infection (baseline) and after
symptom onset so that mice with moderate to severe deficits
(scores 3–6, see below) could undergo electrophysiological
assessment. Compound muscle action potential (CMAP) of
the gastrocnemius muscle was recorded before infection
(baseline) and after moderate to severe deficits had developed.
After infection, one sham-infected mouse was recorded for
every one to two ZIKV-infected mouse. Measurements were
obtained by a researcher who was blind to the infection status
and deficit score of each mouse. CMAP responses were re-
corded in response to stimulation at the sciatic notch and then

the lumbosacral spinal cord. Because stimulation of the lum-
bar spinal cord was an invasive procedure, we did not obtain
baseline measurements for CMAP in response to spinal cord
stimulation.

Viral paresis scale

Mice were analyzed for signs of tail and hindlimb paresis/
paralysis using a sensitive, open-field assay modified from
the Basso Mouse Scale used to assess paralysis in spinal
cord-injured mice (Basso et al. 2006) and a test used to track
paralysis in amyotrophic lateral sclerosis mouse models
(Hatzipetros et al. 2015). Eachmouse was placed on a tabletop
and allowed to roam freely for 4 min. Hindlimb function was
scored on a seven-point scale detailed in Table 1 by re-
searchers who were blind to the infection status of each group.
Scoring was based on four main categories: tail position dur-
ing walking, miss-step severity, weight bearing, and joint
movement. Miss-step severity was scored only on assessable
walking passes, which was defined as a pass in which the
animal moved three body lengths at a consistent speed and
without turning (Basso et al. 2006). Separate scores were giv-
en for the left and right hindlimbs to assess if symptoms were
bilateral or unilateral.

Seizure-like activity score

Seizure-like activity noted during viral paresis scale (VPS)
assessments was recorded as mild if the animal had mild
shakes or tremors or severe if the animal was violently seizing
in the cage.

Histological analyses

Mice were perfused transcardially with phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde. The brain,
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Fig. 1 Weight loss and survival curves for AG129 adult mice infected
with ZIKV in experiment no. 1. a Body weight expressed as a percentage
of starting weight after ZIKV or sham infection. b Percentage of each

group surviving at each day after ZIKV or sham infection. All sham-
infected animals (male and female) are represented in the sham group
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kidney, liver, pancreas, hindlimbs, and lumbosacral spinal col-
umn were removed and post-fixed in the same fixative over-
night, rocking at 4 °C. Tissues were rinsed twice in PBS, and
the lumbosacral spinal cord, sciatic nerves, and gastrocnemius
muscles were isolated. All tissues except the gastrocnemius
muscle on the right were cryoprotected in 30% sucrose in PBS
for 2–3 days at 4 °C, embedded in OCT compound (Ted
Pella), and frozen with a dry ice/ethanol bath. Five sets of
adjacent sections were cut on a cryostat at 25 μm, mounted
on slides, and stored at − 20 °C until ready for further process-
ing. For immunohistofluorescent staining, sections were
encircled with a hydrophobic barrier pen (ImmEdge, Vector
Labs), rinsed with PBS, and blocked with 10% normal serum
and 1% Triton X-100 in PBS for 1 h. Primary antibodies were

diluted in blocking solution as shown in Table 2 and applied to
sections for incubation overnight at room temperature.
Secondary antibodies conjugated to Alexa-488, Alexa-568,
or Alexa-647 (from Invitrogen or Jackson ImmunoResearch)
were diluted to 10 μg/mL in blocking solution. Sections were
rinsed three times in PBS, incubated with secondary antibody
solution for 2 h at room temperature, rinsed three times in
PBS, incubated with Hoechst 33342 (Invitrogen, 1/2000 in
PBS with 0.05% Triton X-100), and rinsed twice in PBS.
Coverslips were mounted with Fluoromount G (Southern
Biotech). For CD3 labeling, the amount of Triton X-100 was
decreased to 0.5% in the blocking solution and 0.2% in the
antibody diluent.

Gastrocnemius muscles from the right side were sectioned
longitudinally at 200 μm on a Vibratome (3000 plus,
Vibratome Co.), collected in PBS, and stored at 4 °C. Ten to
12 sections were obtained for each muscle, and the third or
fourth and seventh or eighth sections were chosen for neuro-
muscular junction (NMJ) and neurofilament (NF-H) staining
as described in Itoh et al. (2011). Briefly, sections were incu-
bated free floating in 0.1M glycine in PBS, pH 7.3 for 30min;
blocked with 5% donkey serum (Jackson ImmunoResearch
Laboratories), 0.5% Triton X-100, and 1% BSA in PBS con-
taining tetramethylrhodamine (TMR)-conjugated alpha-
bungarotoxin (α-btx) for 1 h; permeablized with 100% meth-
anol at − 20 °C for 7 min; rinsed with PBS with 0.5% Triton
X-100 (PBST); and incubated with primary antibody diluted
in 1% BSA and 0.3% Triton X-100 in PBS at 4 °C for 48 h.
After rinsing in PBST three times, sections were incubated at
room temperature for 2 h with secondary antibody (anti-
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chicken conjugated to Alexa Fluor® 488, 1/100, Jackson
ImmunoResearch Laboratories) diluted in PBS. After rinsing
in PBST three times, sections were dehydrated through a
methanol series (15 min each in 20, 50, 70, 100%), cleared
with benzyl alcohol/benzyl benzoate (1:2) (Zukor et al. 2010),
and stored at 4 °C until ready to image.

Imaging and image processing

Fluorescent images were obtained at ×10 or ×20 with a laser
scanning confocal microscope (Zeiss, LSM710) equipped
with 405, 488, 561, and 633 laser lines. For images taken
for pixel-based quantification, identical settings were used
for all images in a set. For images chosen for publication,
distracting artifacts were removed in ImageJ (Schneider
et al. 2012) and levels were adjusted in Photoshop to maxi-
mize the signal-to-noise ratio so that relevant features could be
seen more clearly. For images chosen to highlight pixel-based
quantification, sham and ZIKV group images were adjusted
identically to enable equitable comparison.

Image quantification

ImageJ or FIJI was used for image quantification (Schneider
et al. 2012). The cell counter plugin was used for manual cell
counts. For pixel-based quantification of a given antibody

Table 1 VPS scoring criteria

Score Description Signs

0 Normal Normal, weight-bearing, plantar steppinga with tail up during walking passesb

1 Onset of symptoms Weight-bearing, plantar stepping with mild rotation

Tail position: May be down or not fully up

Miss-step: Foot rotated on take-off or landing

Weight bearing: Wobble is present indicating weakness

2 Mild paresis Mild miss-steps (but able to bear weight)

Tail position: Down

Miss-step: Mild, toe curling/dragging on ground foot slightly skids medially or laterally

Weight bearing: A limp may be present indicating weakness

Joint movement: May appear stiffer

3 Moderate paresis Moderate miss-steps (but able to bear weight)

Miss-step: Obvious foot curling/dragging on ground foot obviously skids medially or laterally

Weight bearing: Limb is obviously weak

Joint movement: May appear stiffer

4 Severe paresis Severe miss-steps (not bearing much weight)

Miss-step: Limb mostly drags behind, medially or laterally

Weight bearing: Not much, but limb still used to aid forward motion

Joint movement: Obviously decreased

5 Paralysis No weight-bearing steps, slight joint movement

Miss-step: No stepping, limb only drags

Weight bearing: None

Joint movement: Slight

6 Complete paralysis No weight-bearing steps, no joint movement

Joint movement: None

a Plantar stepping: Paw is placed flat on ground during stepping. It does not curl or skid to one side, and the toes/feet do not curl or drag at any point
bWalking pass: Animal moves three body lengths at a consistent speed and without turning

Table 2 Primary antibodiesa

Antibody Antibody type Company, Catalog # Dilution

ChAT Goat pAb Millipore, AB144P 1/100

ZIKV Rabbit pAb IBT, 0308-001 1/500

iba1 Goat pAb Abcam, ab5076 1/200

GFAP Rat IgG2a-kappa mAb Invitrogen, 13-0300 1/500

CD3 Rabbit mAb Abcam, ab16669 1/100

NF-H Chick pAb Aves Labs, NFH 1/200

MBP Rat IgG2a mAb Abcam, ab7349 1/200

Ly6G Rat IgG2b mAb Abcam, ab25377 1/500

α-Bungarotoxin-TMR Biotium, 00012/00014 1/1000

pAb polyclonal antibody, mAb monoclonal antibody
a Summary of primary antibodies and dilutions used
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signal, the area to be measured was defined by a region of
interest (ROI); then, thresholds of single-channel images were
adjusted to select pixels with signal above noise (positive
pixels). Thresholds of all images in a set were adjusted iden-
tically for equitable comparison. Then, positive pixels within
the whole area ROI were measured to obtain the area occupied
by positive pixels. The area of positive pixels was divided by
the whole area of the main ROI to determine what proportion
of the ROI was positive for the antibody. For co-localization
analysis, pixels that were positive for two antibody signals
were measured.

Sagittal sections of the brain containing motor cortex were
identified based on the morphology of the lateral ventricle
about 1 mm lateral of bregma (Paxinos and Franklin 2004).
A 1417 × 553 μm2 region containing the pyramidal cell layer
of the motor cortex, in a region of the motor cortex just dorsal
to the lateral ventricle, was measured for pixel-based quanti-
fications (see box in Fig. 4 (D) for location of the region
measured). Two sections per animal were measured for each
parameter. For analysis of ZIKV in the hippocampus, one
section per animal was measured, and the area measured
corresponded to pyramidal cell layer (see Fig. 4 (B) for loca-
tion of region measured).

Spinal cord levels were identified using the mouse spinal
cord atlas (Watson et al. 2009) and the location and morphol-
ogy of clusters of choline acetyltransferase (ChAT) positive
neurons. Because motor neurons for the gastrocnemius mus-
cle are located at the L4-L5 level (McHanwell and Biscoe
1981), sections from this level were chosen for analysis when
possible. For ventral motor neuron, astrocyte, and ZIKV in-
fection level analyses, two sections per animal were analyzed.
ZIKV−, ChAT+ and ZIKV+, ChAT+ neurons in the ventral
horns were counted manually using the cell counter in ImageJ.
Because there were occasionally ZIKV+ cells in the ventral
horns with neuronal morphology that had low or undetectable
ChAT levels (Fig. 5 (B1–B3)), these cells were also counted as
ventral motor neurons. For analysis of Ly6G (neutrophils),
CD3 (T cells), and iba1 (microglia/macrophages) signals,
one section per animal was analyzed.

For the nerve cross sections, a stereological counting
grid containing 25 × 25 μm2 boxes where each box was
spaced 25 μm from the boxes above and below it was
placed over the nerve to obtain counts from a sample of
the nerve, representing approximately one fourth of the
total area. An ROI was placed around the whole nerve,
and the counting grid was cut to eliminate all areas of the
grid outside of the nerve (see Fig. 6a). Stereological
counting rules were used to count the number of myelinat-
ed axons, unmyelinated axons, and empty myelin sheaths
within the boxes of the cut grid. Images were converted to
composite images, so the neurofilament and myelin basic
protein (MBP) channels could be toggled on and off during
counting. All counts were done by a researcher who was

blind to the status of each animal. The area of the cut grid
as well as the area of the whole ROI were calculated and
used to extrapolate the number of myelinated axons, un-
myelinated axons, and empty myelin sheaths within the
whole area. Three sections per animal were analyzed.

For NMJ analysis, two sections per animal were analyzed.
Confocal z-stacks (~ 1-μm step size) of two optimal fields of
view containing NMJ endplates (α-btx+) and nerve fibers
(NF-H+) were analyzed per section for a total of four fields
of view per animal. The number of endplates and the number
of innervated endplates (co-localized with some
neurofilament signal) were counted manually with the cell
counter in ImageJ. Images were converted to composite im-
ages, so the NF-H andα-btx channels could be toggled on and
off during counting. Total numbers of innervated NMJs (NF-
H+, α-btx+) and all NMJs (α-btx+) from all four fields ana-
lyzed were used to calculate the percentage of NMJs that were
innervated per animal.

Gastrocnemius CMAP

CMAP measurements were performed by a researcher who
was blind to the infection status and VPS score of each
mouse. Animals were anesthetized with isoflurane and main-
tained at 37 °C body temperature with a rectal probe and
heating pad, and their hindlimbs were shaved. Monopolar
needle electrodes (Tai-Chi Brand, acupuncture needles) were
inserted into the sciatic notch or epidural to the lumbosacral
spinal cord (after surgical exposure) to stimulate the gastroc-
nemius muscle with 0.1-ms pulses of current using a stimulus

�Fig. 4 ZIKV can broadly infect the brain of adult, AG129 mice. (A)
Sagittal section of the brain of the animal having the most pervasive
CNS ZIKV infection, labeled with antibodies against GFAP (magenta)
and ZIKV (green). (B, C) Examples of ZIKV infection (green) in the
hippocampus of sham (B) and ZIKV (C, close-up of box in A) infected
animals. Outlined region in B shows the region that was quantified in N.
(D–K) Examples of sham (D, F, H, J) and ZIKV (E, G, I, K) infected
motor cortex labeled with antibodies against GFAP (astrocytes, magenta)
and ZIKV (green) (D, E), CD3 (T cells, green) (F, G), Ly6G (neutrophils,
green) (H, I), and iba1 (microglia/macrophages, green) (J, K). Box in D
shows the location and size of the region that was quantified in L,M, P–S.
(E1–E3) Close-up of infected astrocytes in boxed area of E showing the
GFAP (E1) and ZIKV (E2) channels separately and merged (E3).
Arrowheads mark ZIKV+, GFAP+ astrocytes. (G1) Close-up of T cells
in boxed area of G. (I1) Close-up of neutrophils in boxed area of I. (J1)
Close-up of resting microglia in boxed area of J. (L, M, P–S)
Quantification of signal in a region of motor cortex containing the layer
V pyramidal neurons (corresponding to the boxed region shown in D).
Each dot represents one animal. Bars indicate mean and SEM of each
group. *p = 0.0315; **p = 0.0088; #p = 0.0221; @p = 0.0102. (N)
Quantification of signal in the pyramidal cell layer of the hippocampus
(corresponding to the outlined region shown in B). (O) Correlation be-
tween ZIKV infection level in the hippocampus pyramidal cell layer and
severity of seizure-like activity. Line represents linear regression analysis.
Scale bars = 1 mm (A), 500 μm (B, C same scale), 250 μm (D–K same
scale), 50 μm (E1–E, G1, I1, J1 same scale)
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isolator (WPI Isostim A320). For lumbosacral spinal cord
stimulation, monopolar needle electrodes (BIOPAC
Systems, EL452) were used, and the anode was inserted be-
tween the T13 and L1 vertebrae, and the cathode was inserted
between the L1 and L2 vertebrae (Basoglu et al. 2013;
Harrison et al. 2013). No laminectomy was necessary.
Muscle responses were recorded with 4-mm-diameter
shielded Ag/AgCl surface recording electrodes (EL254S,
Biopac system) filled with electrode gel. Electrodes were
placed on the skin at the belly of the muscle and at the ante-
rior aspect of the ankle and connected to a differential ampli-
fier (DAM 50, WPI) with a gain of ×100 and filtered with a
300-1K Hz band pass filter. Data were acquired at a 20 K/s

sampling rate with Powerlab 4/25 and LabChart 8 software
(ADInstruments). Responses to five pulses at 1 Hz were av-
eraged, and the current was increased incrementally until a
maximum amplitude was reached. Maximal CMAP ampli-
tudes were measured from peak to peak of the M wave.

For experiments with α-btx, uninfected, male AG129
mice, about 2.5 months of age, were used. After finding the
stimulation current that gave the maximal CMAP response,
50 μl of 12.5, 6.25, or 3.13 μM α-btx (Biotium, Inc., #00010-
1) was injected into the gastrocnemius muscle (with the gel
pads kept in place) with a 26G needle (Nakanishi et al. 2005).
CMAP responses after maximal stimulation current were re-
corded at intervals for up to 1 h afterα-btx injection. Dilutions
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bars = 500 μm (A–J same scale), 100 μm (B1–B3 same scale), 50 μm
(D1–D3 and F1–I1 same scale)

J. Neurovirol.



of α-btx were made with saline, and thus, a 50 μl saline in-
jection was used in the control.

Statistics

Data were graphed and analyzed with Prism (GraphPad
Software, Inc.) for statistical significance using t tests or
two-way ANOVAs with post hoc t tests. Linear regression
was used for correlation analyses.

Results

Experiment no. 1 disease and behavioral motor deficits

ZIKV-infected animals began losing weight by 7 DPI and
started succumbing to the disease by 11 DPI (Fig. 1). By 16
DPI, all ZIKV-infected animals had died or been humanely
euthanized.

The onset of hindlimb motor deficits in ZIKV-infected
mice ranged from 8 to 13 DPI (Fig. 2a, b). Initial symp-
toms included tail weakness (tail not in the up position
during walking) and subtle hindlimb lateral skidding and
weakness (as indicated by a limp or wobble). Disease
progressed quickly after the onset of motor deficits and
morbidity occurred within 2–3 days. The severity of motor
deficits generally increased rapidly, with VPS scores
reaching as high as 5 or 6 before death (hindlimb dragging
with little to no joint movement). Mice were grouped into
early (8–11 DPI) and late (12–13 DPI) onset groups in Fig.
2c, d so that scores from later onset mice would not mask
the progression of disease in the early onset mice. Deficits
were more severe on the right side compared with the left,

corresponding to the side of virus inoculation. Forelimbs
were rarely affected.

Seizure-like activity was also observed in ZIKV-infected
mice (Fig. 3). Six of 10 ZIKV-infected mice had some seizure-
like activity, and 4 mice were scored as severe (Fig. 3a).
Seizure-like activity did not correlate with VPS score (Fig.
3b). Half of the mice in which severe seizure-like activity
was noted had no to only subtle hindlimb deficits after seizure
activity had subsided. Additionally, there were mice with
complete paralysis (VPS score of 6) that were never observed
to have seizure-like activity. Two other disease phenotypes,
walking in circles and extreme mobile activity (not shown),
were also observed (data not shown).

Interestingly, the severity of hindlimb paralysis and
seizure-like activity did not correlate well with changes in
body weight (Supplementary Fig. S1), suggesting that mech-
anisms affecting neuroinvasion might operate independently
from those affecting systemic infection and body weight
changes.

Experiment no. 1 immunohistofluorescence

Initial histopathologic analysis of our relatively thick, frozen
sections with hematoxylin and eosin staining was considered
to be preliminary. Nevertheless, the following preliminary re-
sults were evidence of mild to moderate, multifocal encepha-
litis in the brain; moderate to severe, multifocal myelitis in the
spinal cord; and no lesions in the gastrocnemius muscle or
sciatic nerve (data not shown). To further identify anatomical
features that might be associated with motor deficits, we per-
formed immunohistofluorescent analyses of the motor cortex,
lumbosacral spinal cord, sciatic nerve, and gastrocnemius
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muscle. The kidney, liver, and pancreas were collected to as-
sess systemic infection level.

Motor cortex

Using a polyclonal antibody against ZIKVenvelope glyco-
protein, ZIKV immunoreactive (ir) was seen in all parts of
the adult AG129 mouse brain, including motor cortex, cer-
ebellum, hippocampus, and brainstem (Fig. 4 (A)). In the
motor cortex, ZIKV infects both neurons and astrocytes
(arrows in Fig. 4 (E1–E3)), and many of the neurons have
the morphology and location of layer V pyramidal neurons
which are upper motor neurons that project to the spinal
cord (Fig. 4 (E and E1–E3)). Quantification of a region of
the motor cortex containing layer V (shown in box in Fig. 4
(D)) revealed that 1–2% and up to 6–8% of the area were
ZIKV ir in ZIKV-infected mice (Fig. 4 (L)). Additionally,
20–50% of astrocytes in this area were ZIKV ir (Fig. 4
(M)), as measured by pixel-based quantification.

There were also significant increases in astrogliosis (Fig. 4
(E, E1–E3, and P)), T cell infiltration (Fig. 4 (G, G1, and Q)),
and neutrophil infiltration (Fig. 4 (I, I1, and R)) in the ZIKV-
infectedmotor cortex compared to sham infected (Fig. 4 (D, F,
and H)). Interestingly, microglia and macrophages were virtu-
ally undetectable in the ZIKV-infected AG129 mouse brain
(Fig. 4 (K and S)), though resting microglia were apparent in
sham-infected brains (Fig. 4 (J and J1).

Hippocampus

The pyramidal cell layer of the hippocampus was also strik-
ingly ZIKV ir in many ZIKV-infected mice (Fig. 4 (C)).
Quantification of this region (outlined in Fig. 4 (B)) demon-
strated that 20–50% of this layer was ZIKV ir in three of eight
mice (Fig. 4 (N)). Because of the association between the
hippocampus and seizure activity, the severity of seizure-like
activity was plotted against hippocampus pyramidal cell layer
ZIKV infection levels, but no correlation was found (Fig. 4
(O)). Likewise, no correlation was found between motor cor-
tex infection level and seizure-like activity (data not shown).

Lumbosacral spinal cord

ZIKV ir was also abundant in the lumbosacral spinal cord
which contains lower motor neurons that innervate the
hindlimbs (Fig. 5 (A–D)). Overall, 1–7% of the cross-
sectional area was ZIKV ir (Fig. 5 (K)). As with the brain,
astrocytes (arrowheads in Fig. 5 (D1–D3 and M)) and neurons
were infected. Using a ChAT antibody to label ventral motor
neurons, many were found to be ZIKV ir (arrows in Fig. 5
(B1–B3)) and a few ventral cells with clear neuronal morphol-
ogy were strongly ZIKVir, but only weakly ChAT ir (asterisks
in Fig. 5 (B1–B3)). As many as 20–70% of ventral motor

neurons were ZIKV ir (Fig. 5 (L)), which suggests that
ZIKV can infect and replicate in lower motor neurons in the
spinal cord. The number of motor neurons at the L4-L5 and S
levels was also diminished in many ZIKV-infected mice (Fig.
5 (N and O)), but the difference from sham-infected mice did
not reach statistical significance, likely because the disease
progressed so rapidly.

As in the brain, astrogliosis (Fig. 5 (C, D, and P)), T cell
infiltration (Fig. 5 (E, F, F1, and Q), and neutrophil infiltration
(Fig. 5 (G, H, H1, and R) were markedly increased in ZIKV-
infected mice compared to sham-injected mice. Conversely,
microglia and macrophages were markedly reduced or absent
(Fig. 5 (J and S)) in these ZIKV-infected AG129 mice, as
observed in the brain, though resting microglia were evident
in sham-infected spinal cords (Fig. 5 (I and I1).

Sciatic nerve

ZIKV ir reactivity was detected in cross sections of the sciatic
nerve (Fig. 6c–e); however, this did not appear to have a
statistically significant effect on the number of myelinated
axons (Fig. 6a, b, f), unmyelinated axons (Fig. 6g), or empty
myelin sheaths (Fig. 6h).

Gastrocnemius muscle, kidney, liver, and pancreas

ZIKV ir and neutrophil infiltration were not detected in the
gastrocnemius muscles of ZIKV-infected mice (data not
shown). Infection of lower motor neurons in the spinal cord
and their axons in the sciatic nerve did not appear to lead to a
statistically significant loss of NMJ number or innervation
(Fig. 7). No ZIKV ir was detected in the kidney, liver, or
pancreas of ZIKV-infected mice (data not shown).

Correlations

To determine which anatomical features might be correlated
with hindlimb motor deficits, we used our data to make pre-
liminary correlations between histological parameters of the
spinal cord (Fig. 8a–f), motor cortex (Fig. 8g–k), NMJ (Fig.
8l), and sciatic nerve (Fig. 8m) and VPS scores. Statistically
significant correlations were only found with spinal cord pa-
rameters. Increased numbers of ZIKV-infected ventral motor
neurons in the lumbosacral spinal cord are associated with
higher VPS scores (Fig. 8a, p < 0.05), and higher VPS scores
are associated with decreased survival of spinal motor neurons
(Fig. 8c, p < 0.001). These data suggest that ZIKV infection of
lower motor neurons and lower motor death adversely affects
hindlimb function. Interestingly, the level of neutrophil infil-
tration was inversely proportional to VPS score (Fig. 8f,
p < 0.05), which suggests that the presence of neutrophils
might mitigate motor deficits. To get a preliminary indication
of how neutrophil invasion and spinal motor neuron viral
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infection are related to spinal motor neuron survival (as op-
posed to VPS score), correlation graphs with these parameters
were prepared as well and similar trends were observed
(Supplemental Fig. S2). VPS scores did not appear to correlate
with virus levels in the motor cortex (Fig. 8g, h) or with sciatic
nerve infection levels (data not shown).

Overall, these results suggest that hindlimb motor deficits
in these AG129mice during the acute phase of ZIKVinfection
are likely caused primarily by spinal cord myelitis, though
upper motor neuron disease and peripheral neuropathy may
contribute.

Experiment no. 2 disease and behavioral motor deficits

Experiment no. 2 reproduced the disease and motor pheno-
types seen in experiment no. 1. ZIKV-infected animals began
losing weight by 7 DPI and started succumbing to the disease
by 11 DPI (Supplemental Fig. S3). All ZIKV-infected mice
had died or been humanely euthanized by 14 instead of 16
DPI. VPS assessments were done less frequently, but symp-
toms appeared at a similar timing and progressed at a similar
rate (Supplemental Fig. S4).

Experiment no. 2 electrophysiological assessment

When mice in experiment no. 2 had VPS scores ≥ 3, gastroc-
nemius muscle CMAPs were recorded in response to stimu-
lation at the sciatic notch, followed by stimulation of the lum-
bosacral spinal cord to further delineate the cause of the
hindlimbmotor deficits. We reasoned that since motor deficits
progress quickly after symptom onset and many motor neu-
rons, though infected, have not died by the time severe deficits
occur, axons and NMJs may still be healthy even if the neu-
ronal cell body is sick. Thus, CMAP amplitudes may be nor-
mal in response to sciatic notch stimulation, but decreased
upon lumbosacral spinal cord stimulation. Responses to stim-
ulation at these two sites, therefore, might distinguish between
myositis/neuritis and myelitis.

Because CMAP measurement in response to lumbar spinal
cord stimulation was an invasive procedure, pre-infection
baselines were only obtained in response to sciatic notch stim-
ulation. Figure 9a shows the CMAP amplitudes for each ani-
mal pre-infection and post-infection in response to stimulation
at the two sites. There are no statistically significant differ-
ences between groups when these Babsolute^ values are used.
The use of relative values, however, are more compelling, and
may be necessary because individual differences in the thick-
ness and composition of tissue between the surface of the skin
and the muscle can affect CMAP amplitudes (Nordander et al.
2003). When post-infection CMAP amplitude was expressed
relative to pre-infection amplitude (both in response to sciatic
notch stimulation), there was no statistically significant differ-
ence between the ZIKV-infected and sham-infected groups

(Fig. 9b, Bpre minus post, at notch^), suggesting that the axons
and NMJs are healthy after infection and motor deficits are not
due to myositis or neuritis. When post-infection CMAP am-
plitude in response to stimulation of the spinal cord was
expressed relative to the amplitude in response to stimulation
at the sciatic notch, however, there was a statistically signifi-
cant relative decrease in amplitude in the ZIKV-infected group
(Fig. 9b, Bpost, at s. cord minus notch,^ p < 0.05). This sug-
gests that, after infection and at the time motor deficits are
observed, the axons and NMJs are healthy enough to generate
a normal CMAP response when axons are stimulated at the
sciatic notch, but the neuronal cell bodies in the spinal cord are
impaired and less able to generate normal CMAP responses
when stimulated at the lumbosacral spinal cord. This indicates
that myelitis, rather thanmyositis or neuritis, contributes to the
motor deficits. The fact that VPS score did not correlate with
the relative CMAP amplitude in response to spinal cord stim-
ulation (Fig. 9c), however, suggests that other factors also
contribute to hindlimb motor deficits.

To validate that the CMAP indeed reflected muscle activ-
ity, and not just nerve activity, an inhibitor of the NMJ nico-
tinic acetylcholine receptor, α-btx, was injected into the gas-
trocnemius muscles of uninfected adult AG129 mice, and
CMAPs were recorded for up to 1 h after injection. CMAP
amplitudes decreased in a dose-dependent manner over the
course of the 1 h after α-btx injection, whereas CMAP ampli-
tude in the saline-injected animal was relatively stable
(Fig. 10). These data suggest that the CMAP reflects mostly
muscle rather than nerve activity, and thus, CMAP measured
the health status of all structures between the point of stimu-
lation and the muscle (including the nerve and NMJ).

Discussion

This study demonstrates that a contemporary strain of ZIKV
(PRVABC59) can widely infect astrocytes and neurons in the
brain and spinal cord of adult AG129 mice and cause rapidly
progressing hindlimb paralysis, as well as severe seizure ac-
tivity, during the acute phase of disease. Motor deficits in
these circumstances appear to be primarily due to myelitis
and possibly encephalitis as opposed to a peripheral neuropa-
thy or GBS-like syndrome. This is an important new finding
because the most severe histopathologies previously reported
in AG129 mice were in the brain and muscle (Aliota et al.
2016). The finding that myelitis is likely the primary cause of
ZIKV-induced paralysis is also in alignment with what has
been seen with other flavivirus-induced motor deficits
(Sejvar et al. 2003; Solomon et al. 1998). This conclusion is
also supported by our data suggesting that muscle and periph-
eral nerve functions are normal. Electrophysiological CMAP
amplitude measurements of sciatic nerve and sural muscles
were normal in response to stimulation at the sciatic notch.
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Additionally, the anatomy of the sciatic nerve and gastrocne-
mius muscle, as revealed by neurofilament/MBP and
neurofilament/NMJ staining, respectively, was minimally
disrupted. In contrast, ZIKV ir was high, intense, and obvious
in the brain and spinal cord. The severity of hindlimb motor
deficits correlated with increased numbers of ZIKV-infected
lumbosacral spinal motor neurons and decreased numbers of
spinal motor neurons. Relative CMAP amplitudes upon

stimulation at the lumbar spinal cord were also reduced when
obvious motor deficits were present (VPS score ≥ 3). ZIKV
infections in the brain and spinal cord were also associated
with astrogliosis as well as T cell and neutrophil infiltration.
Thus, acute ZIKV infection of adult AG129 mice may be a
useful model for studying the mechanisms of ZIKV-induced
myelitis (Anaya et al. 2017; Dirlikov et al. 2016), encephalitis,
and seizure activity.

Myelitis

The results of this study may be clinically relevant, because
there have been several reports of myelitis during recent ZIKV
outbreaks. In the February 2016 outbreak in Guadeloupe, a
15-year-old girl developed hemiparalysis that was associated
with detection of ZIKV in the cerebrospinal fluid. Magnetic
resonance imaging revealed extensive lesions in the cervical
and thoracic spinal cord (Mecharles et al. 2016). Investigators
reporting on ZIKV-associated GBS in Puerto Rico noted 26
cases of neurologic disorders other than GBS, 2 of which were
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Fig. 9 Relative gastrocnemius muscle CMAP amplitudes in response to
lumbosacral spinal cord stimulation are reduced after ZIKV infection. a
Gastrocnemius muscle CMAP amplitude pre-infection in response to
sciatic notch stimulation (pre, notch); post-infection in response to sciatic
notch stimulation (post, notch); post-infection in response to lumbosacral
spinal cord stimulation (post, s. cord). Post-infection measurements were
obtained when VPS score ≥ 3. b Difference between CMAP amplitudes
(also referred to as Brelative^ CMAP amplitudes). For Bpre minus post, at
notch,^ the pre-infection value was subtracted from the post-infection

value in response to sciatic notch stimulation. For Bpost, s. cord minus
notch,^ the post-infection value in response to sciatic notch stimulation
was subtracted from the value in response to lumbosacral spinal cord
stimulation. *p = 0.0355. c Relative CMAP amplitudes in response to
lumbosacral spinal cord stimulation (post, s. cord minus notch in b) plot-
ted against the VPS score on the measured side. Each symbol represents
one animal. Bars indicate mean and SEM of each group. Lines in a and b
connect measurements from same animal (symbols of individual animals
are connected). Line in c represents linear regression analysis
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myelitis (Dirlikov et al. 2016). In a case-controlled study in
Colombia from a national population-based surveillance sys-
tem (Anaya et al. 2017), 29 patients with ZIKV-associated
GBS were compared to matched controls. Thirteen of these
patients were reported to have other neurological syndromes:
three with myelitis, three with peripheral facial palsy, six with
transverse myelitis, and one with thoraco-lumbosacral
myelopathy.

The observation that ZIKV can infect and kill spinal
motor neurons and that this correlates with hindlimb motor
deficits is a unique finding of this report and may be clin-
ically important. Pathology reports of human ZIKV infec-
tion are limited, but do reveal neuronophagia in the brain
(Solomon et al. 2016), which suggests that ZIKV may be
capable of eliciting neuron death in human neurological
tissues as well as in the AG129 mouse. ZIKV infection
has previously been reported in the spinal cords of
AG129 mice (Julander et al. 2017; Zmurko et al. 2016),
and ZIKV-induced histopathology or myelitis has been ob-
served in IFNAR−/− (Lazear et al. 2016) and Swiss Webster
mice infected as newborns (Fernandes et al. 2017).

Myelitis in other flavivirus infections

The ZIKV-induced motor deficits in AG129mice are reminis-
cent of motor deficits caused by other flaviviruses, such as
WNV, in immunocompetent mice and hamsters (Morrey
et al. 2004; Morrey et al. 2008; Shrestha et al. 2003;
Siddharthan et al. 2009; Xiao et al. 2001; Zukor et al. 2017).
These flavivirus models also demonstrate virus infection and
killing of spinal motor neurons together with mild to severe
signs of motor impairment (Zukor et al. 2017).

Encephalitis

The vast majority of adults infected with ZIKV do not develop
severe neurological disease such as encephalitis, yet the
AG129 mice of this study are immunodeficient and develop
encephalitis andmyelitis. As such, the AG129mouse model is
probably more relevant to infection of immunocompromised
patients. Some clinical reports of infected immunocompro-
mised patients describe severe neurological complications
(Henry et al. 2017; Schwartzmann et al. 2017). For example,
an immunosuppressed heart transplant patient developed
acute neurological impairment and mental deterioration after
ZIKV infection, which culminated in death. Autopsy revealed
ZIKV infection of the brain and cerebral spinal fluid by RT-
PCR, immunohistochemistry, and electron microscopy. The
histopathology of the brain was consistent with meningoen-
cephalitis (Schwartzmann et al. 2017).

The fact that relative CMAP amplitude after spinal cord
stimulation did not statistically correlate with VPS score
suggests that damage upstream of spinal motor neurons

may contribute to the hindlimb deficits. For example,
CMAP amplitude was not reduced in two infected mice
with overt paralysis (VPS score 5–6, Fig. 9c). Paralysis
in these animals could be caused by motor cortex, cerebel-
lum, or brainstem dysfunction, as extensive infection was
observed in these areas of the brain. While upper motor
neuron disease is associated with rigid, rather than flaccid
paralysis, we occasionally saw symptoms that could be
interpreted as rigidity, such as walking with high haunches
and extended/stiff limbs, but it was difficult to reliably
assess this with the VPS test. Another possible explanation
for the paralysis in animals with normal relative CMAP
amplitudes is that spinal motor neuron infection damages
dendrites and post-synaptic densities such that the neurons
are not able to receive signals physiologically, but when
stimulated externally with an electrode, the axon hillock
and axon are healthy enough to propagate an action poten-
tial to the muscle.

Seizures

The observation of seizure-like activity in infected AG129
mice in this study and in immunocompetent mice infected as
neonates in another study (Manangeeswaran et al. 2016) may
have clinical relevance since recent ZIKV infections have
been associated with seizures in humans (Asadi-Pooya 2016;
Pastula et al. 2016). Notably, the seizure-like activity in this
study was not correlated with the VPS score, which suggests
that the seizure activity was not simply a manifestation of
motor deficits. To further investigate the relevance, seizures
would need to be confirmed in ZIKV-infected mice with more
detailed analyses.

Peripheral neuropathy

Motor deficits seen in this study are not likely to be the
result of peripheral neuropathy. While ZIKV ir was ob-
served in the sciatic nerve, axon and myelin morphology
did not appear to be altered. ZIKV also did not appear to
alter the function of the sciatic nerve, which is supported
by the observation that gastrocnemius CMAP amplitudes
in response to sciatic notch stimulation were not affected.
The observation of viral antigen in axons is consistent with
prior findings that four families of viruses, including
flaviviruses, can undergo axonal transport and spread in
the nervous system (Samuel et al. 2007; Taylor and
Enquist 2015; Wang et al. 2009), as well as the finding that
ZIKV appears to be able to travel in axons (van den Pol
et al. 2017). We were not able to determine what effect
ZIKV might have on the development of peripheral neu-
ropathies, such as GBS, in this study because the mice die
during the acute infection and peripheral neuropathies tend
to develop in chronic stages.
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Cellular immune responses

In the current study, inflammatory cellular responses, such as
astrogliosis, neutrophil infiltration, and Tcell infiltration, were
present in the brain and spinal cord. The possible influence of
each of these responses to disease severity, whether causative
or protective, is explored below. Future work should compre-
hensively establish correlation with larger sample sizes and
then determine which relationships are causative or protective,
so that the cellular mechanisms underlying ZIKV-induced
motor deficits can be understood.

Neutrophils

Results from this study suggest that neutrophils play a role in
mitigating or protecting ZIKV-infected AG129 mice from
motor deficits, probably by enhancing immune responses that
reduce viral load. Increased numbers of neutrophils, as detect-
ed by the Ly6G antibody, were inversely correlated with VPS
score (p < 0.05). Studies with WNV demonstrate that neutro-
phils can play complex roles during infection. They appear to
be protective early in WNV infection, but detrimental later.
When neutrophils were depleted before WNV challenge in
C3H/HeJ mice, mortality increased, but when they were de-
pleted after WNV challenge, mortality decreased (Bai et al.
2010). Another level of complexity regarding the role of neu-
trophils involves mosquito bites.When neutrophils are deplet-
ed and inflammasome activity is blocked, the ability of mos-
quito bites to promote infection and inflammation is abrogated
(Pingen et al. 2016). Therefore, the role of neutrophils in
ZIKV-induced disease should be further investigated.

Microglia and macrophages

The drastic reduction in iba1 ir (a marker for microglia and
macrophages) in the brains and spinal cords of AG129 mice
infected with ZIKV was a unique finding. It could mean that
microglia and macrophages are present, but the iba1 marker is
strongly downregulated, or it could mean that microglia are
killed and macrophage infiltration is inhibited. After WNV
infection in C57BL6 mice, microglia and macrophages are
strongly activated (Zukor et al. 2017). They are also strongly
activated in wild-type C57BL6 or 129S1/SvImJ mice infected
with ZIKV intracerebrally at E14.5 (Shao et al. 2016). Thus,
the decrease in iba1 ir after ZIKV infection in our study might
be unique to the AG129 mouse strain and could indicate a role
for microglia and macrophages in protecting against lethal
ZIKV infection. For example, M1 macrophages elicit pro-
inflammatory responses and enable phagocytosis and killing
of pathogens, and M2macrophages function in protective and
homeostasis of the CNS (Kabba et al. 2018). A certain balance
of these functions could be overall protective. To further elu-
cidate immunological cellular responses, decreased iba1 ir

cells and modulation of other immune cells should be validat-
ed with flow cytometric analysis in future studies.

T cells

T cell infiltration was associated with ZIKV infection in the
brain and spinal cord, though there was no correlation be-
tween the level of infiltration and the severity of motor defi-
cits. This could indicate that T cells play both beneficial and
detrimental roles (Ousman and Kubes 2012; Prinz and Priller
2017). For example, CD8(+) Tcells contribute to resolution of
WNV neurological infection by helping to clear WNV from
neurons (McCandless et al. 2008; Shrestha et al. 2012). T cells
also play beneficial roles in La Crosse virus infection (Winkler
et al. 2017). T cells, however, are the cause of fatal meningo-
encephalitis after Tacaribe arenavirus infection (Ireland et al.
2017). Future studies will delineate the role of T cells in the
development of motor deficits in ZIKV-infected AG129 mice.

Astrocytes

Astrogliosis in the spinal cord was strongly associated with
ZIKV infection, and many astrocytes were infected by the
virus. As astrocytes regulate synapse formation, function,
and elimination (Chung et al. 2015) and control glutamate
excitotoxicity (Murphy-Royal et al. 2017), this likely had a
significant effect on motor neuron health and function. In a
model of human coronavirus, expression of the primary glu-
tamate transporter in the adult CNS, GLT-1, was decreased in
astrocytes. This was associated with flaccid hindlimb paraly-
sis even in the absence of significant neuronal death. Blockade
of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propranoic
acid (AMPA) receptors with a non-competitive antagonist im-
proved hindlimb function (Brison et al. 2011). In mouse
models of experimental autoimmune encephalomyelitis, as-
trocytes are implicated in the temporary stripping of excitatory
synapses from motor neurons in the spinal cord, leading to
severe flaccid paralysis in the absence of neuronal cell death
(Blakely et al. 2015; Marques et al. 2006). Astrogliosis may
not have correlated with VPS scores in our studies because it
may precede and be required for the onset of motor deficits
(Blakely et al. 2015).

Susceptibility to disease

In two independent experiments, female mice were found to
die slightly earlier than male mice, though this was not statis-
tically significant. Other ZIKV studies with AG129 mice at
our institute, however, suggest that males and females are
equally susceptible (data not shown). Additionally, experi-
ment no. 1 appeared to have two distinct groups of mice with
an early versus late onset of symptoms, though this separation
was not distinct in experiment no. 2. We interpret these trends
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(greater female susceptibility and two phases of disease onset)
to be the result of stochastics and small sample sizes. The
appearance of two onset groups in experiment no. 1 occurred
by chance because we did not sample mice with an interme-
diate onset of symptoms.

Conclusion

The unique contributions of this study are that acute ZIKV
infection of adult AG129 mice causes quantifiable, rapidly
progressing hindlimb motor deficits that often culminates in
full paralysis and that these deficits are likely due to myelitis
and perhaps encephalitis rather than peripheral neuropathy or
myositis. Extensive histopathology and infection occur in the
spinal cord and brain, but not in the sciatic nerve or muscle.
The severity of motor deficits is only correlated with infection
and survival levels of lumbosacral spinal motor neurons.
Moreover, gastrocnemius CMAP amplitudes upon electrical
stimulation of the lumbosacral spinal cord were impaired, but
not upon stimulation of the sciatic nerve. These data should
guide approaches for understanding ZIKV-induced acute my-
elitis or encephalitis in adults.
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