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Abstract The two-sided second order Arnoldi algorithm is used to generate

a reduced order model of two test cases of fully coupled, acoustic interior cav-

ities, backed by flexible structural systems with damping. The reduced order

model is obtained by applying a Galerkin-Petrov projection of the coupled

system matrices, from a higher dimensional subspace to a lower dimensional

subspace, whilst preserving the low frequency moments of the coupled sys-

tem. The basis vectors for projection are computed efficiently using a two-

sided second-order Arnoldi algorithm, which generates an orthogonal basis
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for the second-order Krylov subspace containing moments of the original

higher dimensional system.

The first model is an ABAQUS benchmark problem: a 2D, point loaded,

water filled cavity. The second model is a cylindrical air-filled cavity, with

clamped ends and a load normal to its curved surface. The computational

efficiency, error and convergence are analysed, and the two-sided second order

Arnoldi method shows better efficiency and performance than the one-sided

Arnoldi technique, whilst also preserving the second order structure of the

original problem.

1 INTRODUCTION

Modelling of structural-acoustic behaviour of enclosed cavities is a require-

ment in a wide range of engineering applications, but is of particular interest

in the development of automotive and aerospace vehicles. Because of the

coupling between the fluid and structural domains in the coupled displace-

ment/pressure (u/p) FE/FE formulation [8,24,9,10], the resulting mass and

stiffness matrices are un-symmetric. In order to give reasonable prediction

the mesh density needed can result in huge model sizes for higher frequency

analysis, and hence a significant increase of computational time and expense.

This is an even greater concern when optimization is a goal, particularly for

fully-coupled analyses. A detailed review of the techniques for structural opti-

mization has been presented by Marburg [12], and this describes approaches

and the need for speeding up NVH simulation. Hence there is a need for

compact models to undertake fast coupled structural-acoustic analysis.
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Earlier work by the authors [17,16,15] has focussed on reduced order

modelling techniques based on the use of the first-order, one-sided Arnoldi

algorithm to compute the basis vectors for the orthogonal Krylov subspace for

the solution of undamped fully-coupled structural-acoustic interior problems.

However, for a problem involving an explicit particpation of the damping

matrix, this involves a change of state to a first order problem, which results

in matrices of twice the order of the original matrices, and a loss of structural

preservation in terms of original properties.

This paper focuses on the application of Second Order Krylov-Arnoldi

based MOR techniques to structurally damped, fully-coupled structural-

acoustic problems. The paper is structured as follows: in section 2, the general

framework for model order reduction for second order systems is introduced.

In section 3 the Krylov-Arnoldi framework adapted for model order reduction

for the coupled damped structural-acoustic problem is described. In section

4 a numerical example from the ABAQUS benchmark manual is solved using

both the direct approach in ANSYS FE code and the two-sided second order

Arnoldi approach. Computational times, solution accuracy and convergence

models are discussed. In section 5 a model of a cylindrical air-filled cavity,

with clamped ends and a load normal to its curved surface is analysed using

both the one-sided and two-sided second order Arnoldi techniques.
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2 APPLICATION OF THE SECOND ORDER KRYLOV

SUBSPACE AND MOMENT MATCHING PROPERTIES TO

STRUCTURAL-ACOUSTIC PROBLEMS

For a fully enclosed, fully coupled, interior acoustic cavity, the well-known

Eulerian displacement - pressure (u/p) formulation [24,9,10], can be written

as:

[Msa] q̈(t) + [Csa] q̇(t) + [Ksa] q(t) = FMIsa µ(t) (1a)

y(t) = LT q(t) (1b)

and,

q(t) =


u(t)

p(t)

 (2)

Where, Msa is the coupled mass matrix, Ksa is the coupled structural

stiffness matrix, Csa is the damping matrix for the structural-acoustic sys-

tem; µ(t) is the input force vector and FMIsa is the multiple-input structural-

acoustic input distribution matrix consisting of Fs and Fa, which denote the

input distribution force(s) on the structural domain and constrained acous-

tic pressure degrees of freedom (DOF’s), or purely acoustic excitation, in the

form of volume acceleration within the fluid domain respectively. q(t) is the

output state variable, comprising of u(t) and p(t), which are the displace-

ments of the structural domain and pressure levels in the acoustic domain

respectively.
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The structural damping matrix [Cs], is modelled as proportional damping,

and is therefore written as:

[Cs] = α[Ms] + (β)[Ks] (3)

where, α is the mass matrix multiplier, and β is the stiffness matrix multiplier.

Earlier work by the authors [17,16,15] has demonstrated the efficiencies

to be gained through the application of the first-order Arnoldi based ROM

method, when applied through a linearised state-space transformation of the

original second order equations and directly to the second order system in

the case of an undamped problem.

For a single-input, single-output(SISO) second order structural-acoustic

system in the time domain, it is possible to represent the coupled system in

the frequency domain using Laplace transforms as:

s2

 Ms 0

Mfs Ma


︸ ︷︷ ︸

Msa

q̃(s)︷ ︸︸ ︷
ũ

p̃

+ s

Cs 0

0 Ca


︸ ︷︷ ︸

Csa

q̃(s)︷ ︸︸ ︷
ũ

p̃

 +

Ks Kfs

0 Ka


︸ ︷︷ ︸

Ksa

q̃(s)︷ ︸︸ ︷
ũ

p̃

 = fsa µ(s)

(4a)

where the output measurement vector is given by,

y(s) = lT

q̃(s)︷ ︸︸ ︷
ũ

p̃

 (4b)

and where Ms is the structural mass matrix, Ma is the acoustic mass

matrix; Ks is the structural stiffness matrix, Ka is the acoustic stiffness

matrix; Mfs is the coupling mass matrix, and Kfs is the coupling stiffness
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matrix. ũ denotes the structural displacements, and p̃ denotes the nodal

pressures in the fluid domain. Finally, s = jω, with j =
√
−1 and ω ≥ 0.

Here, q̃(s) and hence ũ, p̃, µ(s), y(s) are the Laplace transforms of q(t)

and hence u, p, µ(t) and y(t) respectively. fsa is the single-input structural-

acoustic input distribution vector, and lT is the output scattering vector to

restore the desired state outputs.

Equations (4a and 4b) can then be re-written in terms of combined

structural-acoustic matrices to give:

s2 [Msa] q̃(s) + s [Csa] q̃(s) + [Ksa] q̃(s) = fsa µ(s) (5a)

y(s) = lT q̃(s) (5b)

Hence the input µ(s) and the output y(s) of Equations (5a and 5b) in the

frequency domain are related by the transfer function of the second order

structural-acoustic system, which is then given by:

hsa(s) =
y(s)

µ(s)
(6a)

hsa(s) = lT ( s2 Msa + s Csa + Ksa)
−1 fsa (6b)

Where it is assumed that Ksa is non-singular.

A power series expansion of Equation (6b) can be expressed as:

hsa(s) = m0 + m1s + m2s
2 + m3s

3 + . . . (7a)

hsa(s) =
∞∑
z=0

mz sz (7b)

where, mz, for all z ≥ 0 are the low-frequency moments of the second or-

der, fully-coupled structural acoustic transfer function hsa(s). These low-

frequency moments are the values and their subsequent derivatives of the
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transfer function hsa at s = 0. According to earlier authors, the moment [3]

mz can be expressed as an inner product between lT and gz:

mz = lT gz for all z ≥ 0 (8)

where, gz is a vector sequence, defined by a second order recurrence relation-

ship. For the coupled structural-acoustic case this is expressed as follows:

g0 = K−1
sa fsa (9a)

g1 = −K−1
sa Csag0 (9b)

gz = −K−1
sa (Csagz−1 +Msagz−2) (9c)

for values of z = 2, 3, . . ..

The vector sequence for gz defined above is called the input second order

Krylov vector sequence, which belongs to the input second order Krylov sub-

space, induced by two matrices A,B and the starting vector g0, and written

as:

Kri
q (A,B, g0) = span(g0, g1, g2, g3, . . . gq−1) (10)

where, A = −[Ksa]
−1[Csa], B = −[Ksa]

−1[Msa].

In a similar manner, the output second order Krylov vector sequence can

also be computed. In this instance the moments can be expressed as an inner

product between fTsa and lz:

mz = fTsalz for all z ≥ 0 (11)
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In this case, it is also necessary to evaluate the vector sequence lz:

l0 = K−T
sa l (12a)

l1 = −K−T
sa CT

sal0 (12b)

lz = −K−T
sa (CT

salz−1 +MT
salz−2) (12c)

for values of z = 2, 3, . . ..

The vector sequence defined above is called the output second order

Krylov vector sequence. This belongs to the output second order Krylov

subspace, and is induced by the two matrices AT , BT and the starting vector

l0, written as:

Kle
q (A

T , BT , l0) = span(l0, l1, l2, l3, . . . lq−1) (13)

where, AT = −[Ksa]
−T [Csa]

T , B = −[Ksa]
−T [Msa]

T .

Returning to the vector sequences defined in Equations (9a, 9b, 9c, 12a,

12b and 12c), it can be seen that these form the moments of the second order,

structural-acoustic transfer function. The moment matching properties of

the framework described here, and its equivalence to a first order structural-

acoustic system is described in [17].

3 THE SECOND ORDER ARNOLDI METHOD

For the second-order Arnoldi method, projection techniques are used for

dimension reduction, in a similar manner to the projection matrix V used in

standard Krylov subspaces. These projection techniques use an orthogonal
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projection onto the induced right subspace Kri
q (A,B, g0), to construct an

approximation of the original system, such that:

q(t) =


u(t)

p(t)

 = Vsaz̆(t) + εsa (14)

where, z̆(t) are the generalized co-ordinates and εsa is the small approxima-

tion error introduced due to the projection to generalized co-ordinates.

For dimension reduction of practical systems, it is often desirable to ap-

proximate the original coupled system for values where s0 6= 0, or even for

multiple values of s0 6= 0 (leading to second order, rational Krylov methods).

In this case, the transfer function of the coupled system is written as:

hsa(s) = lT ( s2 Msa + s Csa + Ksa)
−1 fsa

hsa(s) = lT ( (s− s0)
2 Msa + (s− s0) C̃sa + K̃sa)

−1 fsa (15)

and, the fully coupled, structural-acoustic matrices [K̃sa] and [C̃sa] are de-

fined as:

[K̃sa] = s2Msa + sCsa +Ksa (16a)

[C̃sa] = 2sMsa + Csa (16b)

In this expression [C̃sa] is simply the first derivative of [K̃sa]. Here, s0

can be any user specified value, with the constraint that the matrix [K̃sa] is

non-singular.

The low frequency moments, and thus the recurrence scheme specified in

Equations (9a,9b, 9c,12a,12b, 12c) are then expressed as follows:

hsa(s) =
∞∑
z=0

m̃z (s− s0)
z (17)
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where, m̃z, for all z ≥ 0 are called the shifted low-frequency moments of the

second order, fully-coupled structural-acoustic system defined in Equations

(4a,4b). These shifted moments can be computed as follows:

m̃z = lT g̃z, m̃z = fTsa l̃z for all z ≥ 0 (18)

with the following recurrence schemes for g̃z and l̃z:

g̃0 = K̃−1
sa fsa (19a)

g̃1 = −K̃−1
sa C̃sag̃0 (19b)

g̃z = −K̃−1
sa (C̃sag̃z−1 +Msag̃z−2) (19c)

for values of z = 2, 3, . . ..

l̃0 = K̃−T
sa l (20a)

l̃1 = −K̃−T
sa C̃T

sa l̃0 (20b)

l̃z = −K̃−T
sa (C̃T

sa l̃z−1 +MT
sa l̃z−2) (20c)

for values of z = 2, 3, . . ..

Most real-world problems involve values of s0 6= 0, and therefore, the

shifted moments defined in Equation (18) are a critical objective in the di-

mension reduction of higher order systems.

It is well known that explicit moment matching, as a technique, exhibits

numerical difficulties [11], and hence, in this work, implicit moment matching

is carried out via a two-sided, second-order Arnoldi-based direct projection

technique. In this case, the orthonormal projection matrices, Vsa and Wsa

for Galerkin or Petrov-Galerkin type projections, which span the input and
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output Krylov subspaces defined in Equations (10 and 13), defined as follows

are used:

Kri
q (A,B, g0) = span(Vsa) and V T

saVsa = I (21a)

Kle
q (A,B, l0) = span(Wsa) and WT

saWsa = I (21b)

For structural-acoustic problems these matrices are of the form [A] =

−K̃−1
sa C̃sa, [B] = −K̃−1

sa Msa. With these expressions, it is now possible to

apply the algorithm for standard Arnoldi iterations, as shown in Figures 1

and 2 to compute the basis for the given Second Order Krylov Subspace.

The resulting one sided SOAR procedure (which in this work is utilized to

compute the two-sided second-order Arnoldi (TS-SOAR) column matrices

Vsa, and Wsa)), was first proposed by [21] and later improved and extended

by [3], [4], and [19].

The iterative process described here finds two sets of orthonormal basis

vectors for the induced input and output subspaces, i.e. V T
saVsa = I and

WT
saWsa = I , and therefore the columns of the matrix Vsa and Wsa form a

basis for the induced subspace.

Having carried out this TS-SOAR process, a reduced order model can

now be defined by applying the Petrov-Galerkin projection to the coupled

higher dimensional system matrices as follows:

[Mrsa] = [WT
sa] [Msa] [Vsa], [Krsa] = [WT

sa] [Ksa] [Vsa] (22a)

[Crsa] = [WT
sa] [Csa] [Vsa], frsa = [WT

sa] fsa, lTrsa = lT [Vsa] (22b)

[Mrsa] z̈(t) + [Crsa] ż(t) + [Krsa] z(t) = frsa µ(t) (22c)

yrsa(t) = lTrsaz(t) (22d)
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Input: Read coupled system Matrices [Ksa], [Msa], [Csa], {fsa}, lT , q (Number

of vectors) and expansion point s0, in this case s0 = (ωe + ωb)/2; or ωe.

Form and Set: [K̃sa] = s20Msa + s0Csa +Ksa and [C̃sa] = 2s0Msa + Csa.

Output: q Arnoldi vectors belonging to the Second order Krylov Subspace.

Kri
q (A,B, g0). In this case, Kr

q(−K̃−1
sa C̃sa,−K̃−1

sa Msa,K̃
−1
sa fsa).

[0]. Delete all linearly dependent starting vectors (if multiple) to obtain kst

linearly independent starting vectors.

Set v̄1 = g0
‖g0‖

and p1 = 0 for p1 ∈ <n.

[1]. ∗for i = 2, 3, .. → q ∗do

[1.1] Generate next vector: ∗if i ≤ kst, set v̂i (below) as the ith starting

vector and p̂i = 0.

∗else, set v̂i = Av̄i−kst +Bpi−kst and p̂i = v̄i−kst

[1.2] Orthogonalization: ∗for j = 1 → i - 1, ∗do

h = v̂Ti v̄j , v̂i = v̂i − hv̄j , p̂i = p̂i − hpj

[1.3] Normalization and Deflation check: ∗if v̂i 6= 0 (normal case), then,

∗do v̄i =
v̂i

‖v̂i‖
, pi =

p̂i
‖v̂i‖

.

∗else if p̂i 6= 0, v̄i = 0.

∗else kst = kst − 1. Go to step [1.1]. ∗if kst = 0, delete zero columns.

[1.4] Increase i and go to step [1.1].

[2]. Delete zero columns from deflation, discard resulting Hq and project higher

dimensional system [Msa], [Ksa], [Csa], {fsa}, lT onto [Vsa] to obtain reduced

system matrices [Mrsa], [Krsa], [Crsa], {frsa}, lTrsa for harmonic simulation.

Fig. 1 Algorithm 1 Set-up for SISO/SICO Second Order Arnoldi (SOAR) Process

with multiple starting vectors [3,4,5].

Here rsa denote the reduced structural-acoustic matrices. It is worth noting

that the goal of dimension reduction i.e. reduction of the system matrices

from N×N −→ q×q is now achieved, and the system described in Equations
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[1]. Initialization: Read coupled structural-acoustic matrices, select appropriate

Input and Output Krylov Subspaces: Kr
q(A,B, g0), Kl

q(A
T , BT , l0)

and expansion points.

Form and Set: [K̃sa], [C̃sa] as in Figure 1.

[2]. Generate Projection Matrices: Use the SOAR Algorithm (Figure 1) *do:

[2.1] Kri
q (A,B, g0): Apply A = [−K̃−1

sa C̃sa], B = [−K̃−1
sa Msa]

and g0 = [K̃−1
sa ]{fsa} to compute [V ].

[2.2] Kle
q (AT , BT , l0): Apply AT = [−K̃−T

sa ] [C̃T
sa], B

T = [−K̃−T
sa ] [MT

sa]

and l0 = [K̃−T
sa ]{l} to compute [W ].

[3]. Apply Projection: Use generated column matrices: [Vsa] and [Wsa] and apply

the Galerkin-Petrov projection:
∏

= [Vsa] [Wsa]
T to obtain the

structure preserving ROM matrices: [Mrsa], [Crsa], [Krsa],{frsa}

and lTrsafor reduced harmonic or transient simulation.

Fig. 2 Algorithm 2 Higher-level, complete set-up for SISO Two Sided Second

Order Arnoldi (TS-SOAR) Process.

(22c, 22d) is now ready for the modelling of reduced harmonic or transient

problems.

Hence a reduced order transfer function can now be defined about any

specified expansion point, s0, as described by Bai et al [3]:

hrsa(s) = lTrsa ( (s− s0)
2 Mrsa + (s− s0) C̃rsa + K̃rsa)

−1 frsa (23)

Indeed, it can be shown that the reduced transfer function can be written

as:

hrsa(s) = lTrsa ( s2 Mrsa + s Crsa + Krsa)
−1 frsa (24)
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Subsequently, the first q low frequency shifted moments about any given

expansion point s0 of the original (hsa) and reduced order transfer function

(hrsa) are the same.

It should be noted that although the shifted matrix triple (Msa, C̃sa, K̃sa)

is used to generate the projection matrices Vsa,Wsa, the reduced order model

is computed by projection onto the original higher dimensional system matri-

ces (Msa, Csa, Ksa). The use of such modified system matrices in dimension

reduction is called structure preserving dimension reduction, since it essen-

tially preserves the original second order structure of the problem.

4 NUMERICAL TEST CASE 1: ABAQUS BENCHMARK

PROBLEM

In order to evaluate the performance of the second order Arnoldi TS-SOAR

method, a previously-reported structural-acoustic benchmark problem, which

has been analysed using ABAQUS software, will be implemented, and anal-

yses using one-sided Arnoldi, as well as performing the computation using

two-sided second-order Arnoldi.

The problem consists of a semicircular shell and fluid mesh of radius 2.286

m. A point load of magnitude 1.0 N is applied to the shell along the axis of

symmetry, as shown in Figure 3. The shell is 0.0254 m in thickness and has a

Young’s modulus of 206.8 GPa, a Poisson’s ratio of 0.3, and a mass density,

ρs, of 7800.0 kg/m3. The acoustic fluid has a density, ρf , of 1000 kg/m3 and

a bulk modulus, κf , of 2.25 GPa. The benchmark problem is undamped.
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The response of the coupled system is calculated for frequencies ranging

from 100 to 1000Hz in 1Hz increments. The displacement amplitude at the

coupled driving point is the primary state variable of interest. The problem

is also described in the ABAQUS Benchmark manual [1,20]. The solution

presented here compares analytical solutions with the coupled and uncou-

pled modal expansion solutions obtained utilizing ABAQUS implemented

modal reduction procedures ie the Coupled Lanczos (CL) procedure, and the

popular automated component mode method: Automated Multi-Level Sub-

structuring (AMLS). In previous works by the authors [17,14], it has been

demonstrated that when compared to the analytical results, the ABAQUS

modal solutions (CL and AMLS) and the one-sided and two-sided Arnoldi

projection methods are in good agreement over the entire frequency range

(100-1000Hz) for the undamped problem. 1.

The point load presents a more challenging problem physically in the

modal projection, because the single entry in the FE load vector maps to a

full vector in the reduced problem, but this representation is truncated at

the specified number of vectors.

For the structural damping case, three different values of β are considered.

These are given in Table 1. These models result in an explicit participation of

[Csa] and direct-inversion cannot be avoided. For dimension reduction, the

TS-SOAR process is used for the resulting coupled higher dimensional sys-

1 Note that the one-sided and two-sided Arnoldi process for the undamped prob-

lem does not take into account the explicit participation of the damping matrix
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tem. The aim of using different expansion points for each of the damped test

cases is to observe the effects of moment matching and its resulting accuracy

at different frequencies and for different damping values.

Table 1 Structural Damping values and Expansion point for TS-SOAR for the

ABAQUS benchmark problem.

Damped Test Cases Damping Value Expansion Point

Low Damping [Tld] β=5.0E-06 900Hz / 900Hz

Moderate Damping [Tmd] β=1.0E-05 1000Hz / 1000Hz

High Damping [Thd] β=2.0E-05 750Hz / 750Hz

Fig. 3 Test Case No. 1: Benchmark coupled structural-acoustic model.

The generation of the reduced order model (ROM) in practice, consisted

of four different steps. First, the higher dimensional model was generated in
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ANSYS, and an ANSYS static solution, combined with partial solve [2] was

issued to write out the relevant structural-acoustic database files. Next, an

open source C++ code dumpmatrices [18] was used to extract the higher

dimensional mass and stiffness matrices. The higher dimensional model was

then read using Mathematica [23], and order reduction and projection per-

formed via the Arnoldi process. The harmonic analysis of the reduced system

was performed using LU decomposition in the Mathematica/Matlab [13] en-

vironment. The linearly damped computations described in this paper were

performed on a Windows XP, Pentium 4, 3.2GHz, 2GB RAM machine. Note

that the computational times in the tables may change slightly according to

the condition of the computer and hardware parameters such as the reading

and writing rates of the hard disk drives and the number of processes running

during the analysis.

4.1 COMPUTATIONAL RESULTS AND DISCUSSION

The coupled receptance transfer function (normal structural displacement

divided by input structural force) predicted by ANSYS Direct, and by the

Two-Sided Second order Krylov-Arnoldi [TS-SOAR] projection for the three

sub-test cases with different damping values are given in Figures 4,7, and 10.

To compare the transfer functions, a local error for individual states is

computed, as given in [6], and defined as:

˘̄hrsa(s) =
|H(s)−Hrsa(s)|

|H(s)|
(25)
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This is calculated for all values of s used for the higher dimensional model

and the ROM2. A comparison of these local error quantities defined by Equa-

tion (25), for the TS-SOAR projection for the coupled driving point displace-

ment amplitudes are shown in Figures 5, 8, and 11.

In order to calculate the optimum number of vectors required for conver-

gence, two different convergence models were used. In the first convergence

model, a true error between the two models for all states was computed as

follows:

ϑrsa(s) =
‖ H(s)−Hrsa(s) ‖

‖ H(s) ‖
(26a)

H(s) corresponds to the original transfer function, given by, H(s) =

LT (s2Msa +Ksa)
−1Fsa, and Hrsa(s) is the reduced order transfer function.

For the second convergence model, a relative error between two successive

reduced order models q and q + 1 can be defined as:

ϑ̂rsa(s) =
‖ Hrsa(s)−Hrsa+1(s) ‖

‖ Hrsa(s) ‖
(26b)

For the coupled driving point displacement, the results of the two con-

vergence models are shown in Figures 6, 9, and 12. The convergence plots

suggest that it is not possible to increase the accuracy of the TS-SOAR ap-

proach beyond the use of 110 TS-SOAR generated vectors. This means that

the reduced order system is of order 110 as opposed to the original higher

dimensional model of order 23412.

2 Throughout this work, absolute values for the numerator and denominator are

utilized for error computations.
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Fig. 4 A comparison between ANSYS direct inversion and Two-Sided Second

order Arnoldi (TS-SOAR) predictions of driving point displacement for the model

with low damping, Tld.
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Fig. 5 Error Plot: ANSYS direct inversion and Two-Sided Second order Arnoldi

(TS-SOAR) predictions for structural driving point displacement for the model

with low damping Tld.
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Fig. 6 Convergence Plot: Two-Sided Second order Arnoldi (TS-SOAR) conver-

gence at 101Hz and 1000Hz for the model with low damping, Tld.
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Fig. 7 A comparison between ANSYS direct inversion and Two-Sided Second

order Arnoldi (TS-SOAR) predictions of driving point displacement for the model

with medium damping, Tmd.
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Fig. 8 Error Plot: ANSYS direct inversion and Two-Sided Second order Arnoldi

(TS-SOAR) predictions for structural driving point displacement for the model

with medium damping, Tmd.
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Fig. 9 Convergence Plot: Two-Sided Second order Arnoldi (TS-SOAR) conver-

gence at 101Hz and 1000Hz for the model with medium damping, Tmd.
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Fig. 10 A comparison between ANSYS direct inversion and Two-Sided Second

order Arnoldi (TS-SOAR) predictions of driving point displacement for the model

with high damping, Thd.

The computational times for the solutions obtained using ANSYS direct,

and using the reduced order method, based on the proposed TS-SOAR frame-

work is shown in Table 2. From this, it can be seen that the Krylov-Arnoldi

projection saves computational time of around 97%.

Table 2 A comparison of computational times for damped test cases.

Test Case ANSYS Direct ROM via TS-SOAR Time Reduction

Tld 6413 s 75 s 98.83%

Tmd 6004 s 75 s 98.75%

Thd 6319 s 176 s 97.21%
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Fig. 11 Error Plot: ANSYS direct inversion and Two-Sided Second order Arnoldi

(TS-SOAR) predictions for structural driving point displacement for the model

with high damping, Thd.

5 NUMERICAL TEST CASE 2: CYLINDER ENCLOSING AN

AIR FILLED CAVITY

A steel cylinder is considered as the second test case to test the accuracy

and efficiency of the proposed Second Order Arnoldi based projection for-

mulations. The cylinder has the following dimensions: 1.01 m long, 0.18256

m radius, and 0.001219 m thick, and is made from steel with the follow-

ing mechanical properties: Youngs modulus Es= 200 GPa, mass density

ρs=7800kg/m3, Poissons ratio υs=0.33. The cavity is filled with air hav-

ing the following properties: speed of sound c=343m/s, and mass density

ρc=1.2kg/m3. The coupled system is excited using a normal unit point load
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Fig. 12 Convergence Plot: Two-Sided Second order Arnoldi (TS-SOAR) conver-

gence at 101Hz and 1000Hz for the model with high damping, Thd.

defined in Figure 14. A description of this test case can also be found in [22,

7], where it is reported that the test case is strongly coupled.

The cylinder is discretized using 32 4-node quadrilateral ANSYS SHELL63

elements along the perimeter and 22 elements along the length. The cavity

is discretized using 4-node one DOF pressure elements (ANSYS FLUID30),

with 32 mesh divisions along the perimeter, 22 mesh divisions along the

length, and 15 mesh divisions along the diameter. The desired output quan-

tity considered for this test case is the fluid nodal pressure values at the

centre of the cylinder. The damping values used in the test cases are given

in Table 3.
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Fig. 13 A comparison between undamped and damped solutions obtained by ana-

lytical solution [20,1] and Two-Sided Second order Arnoldi (TS-SOAR) procedure

for the three values of damping, Tld, Tmd, Thd.

Table 3 Damping values and Expansion points for Second Order Arnoldi Process

for Test Case No.2

Damped Test Cases Damping Value Expansion Point

Low damping [TC2FD1] β=5.0E-05 600 / 600 Hz

High damping [TC2FD2] β=7.0E-05 600 / 600Hz

For the two damping models, the SISO Two-Sided Second Order Arnoldi

(TS-SOAR) and the first order one-sided Arnoldi framework were used to

generate the reduced order models. These were compared with models solved

directly in ANSYS.
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Fig. 14 Test Case No. 2: FE mesh for clamped air-filled cylindrical cavity

5.1 COMPUTATIONAL RESULTS AND DISCUSSION

For the model with low damping [TC4FD1], ie with β=5.0E-05, the noise

transfer function at the center of the cylinder is shown in Figure 15. The

local error plot (Figure 16) and the convergence plot (Figure 17) shows that

no accuracy is lost by generating the ROM via TS-SOAR approach and that

no more than 40 Arnoldi generated vectors (for each subspace) are required

for the solution state to be considered converged.

For the structural acoustic model with βm
j =7.0E-05, [TC4FD2], it can

be observed from Figure 18 that both the linearization (with OSA) and

TS-SOAR projection framework generate accurate reduced order models.

However, to achieve convergence, the first order transformed model requires

200 Arnoldi generated vectors, as shown in Figure 20, (due to the introduced

scaling to a first order system), whereas, for the TS-SOAR framework, a

ROM of dimension 40 provides the same accuracy for the considered output.
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For the linearization approach, an expansion point of 600Hz (2×π×600)

has been chosen for the analysis. The local error quantities shown in Figure

19, are both so small as to be considered negligible. However, these do in fact

show that the one-sided Arnoldi approach gives a higher degree of accuracy

over the entire frequency range, whereas the two-sided Arnoldi method gives

a reduced order model with higher accuracy around the chosen expansion

point (600Hz).

This indicates that the second-order Arnoldi method shows advantages

over the one-sided method, in terms of the smaller number of Arnoldi gen-

erated vectors and hence dimension of the reduced order model to give the

same accuracy, but also in terms of improved local accuracy around the

chosen expansion point. The two-sided Arnoldi method also provides signif-

icant benefits in terms of structure preservation and the ability to relate to

the original structure, in comparison with the one-sided Arnoldi technique,

which requires linearization, and does not preserve the original structural

model.

The computational times required to solve the higher dimensional prob-

lem via ANSYS direct and the Arnoldi-based dimension-reduction techniques

are given in Table 4. The time required for reduced order modelling via

Arnoldi is a combination of the time required to generate the Arnoldi vec-

tors, to project the system to second order form and perform a harmonic

analysis on the reduced order model. It can be observed that the computa-

tional times are very similar for the different versions of the test cases. The
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Fig. 15 Predicted Noise Transfer Function (NTF) using ANSYS direct and the

two-sided TS-SOAR projection (40 Arnoldi Vectors) for the fluid node at the centre

of the cylindrical cavity model [TC4FD1] with β=5.0E-05.

Fig. 16 Local Error Plot for two-sided TS-SOAR Arnoldi projection for the fluid

node at the centre of the cylindrical cavity with β=5.0E-05 (40 Arnoldi Vectors).
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Fig. 17 Convergence plot for two-sided TS-SOAR Arnoldi projection for the fluid

node at the centre of the cylindrical cavity with β=5.0E-05 (40 Arnoldi Vectors).

Fig. 18 Predicted Noise Transfer Function (NTF) using ANSYS direct, the lin-

earized one-sided Arnoldi (OSA - 200 vectors), and the two-sided TS-SOAR Arnoldi

projection (40 Arnoldi Vectors) for the fluid node at the centre of the cylindrical

cavity model [TC4FD2] with β=7.0E-05.
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Fig. 19 Local Error quantities for reduced order models generated via the one-

sided Arnoldi (OSA), and the two-sided TS-SOAR Arnoldi projection for the fluid

node at the centre of the cylinder with β=7.0E-05.

Fig. 20 Convergence plot for moment-matching one-sided Arnoldi (OSA) for the

fluid node at the center of the cylinder with β=7.0E-05 (40 Arnoldi Vectors).
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one-sided Arnoldi approach (for Test Case: TC4FD2) results in a drop of

computational efficiency (by around 3%) due to the increased dimension of

the equivalent system, and the fact that more Arnoldi vectors were required

to achieve convergence of the solution state.

Table 4 A comparison of computational times for undamped and damped test

cases.

Test Case ANSYS Direct ROM via Arnoldi Time Reduction

[TC4FD1] 4201 s 95.1 s 97.7%

[TC4FD2] 4719 s 88.2 s 98.1%

Linearization 160.5 s 96.5%

6 CONCLUSION

In this paper, two fully-coupled structural-acoustic models have been anal-

ysed using the two-sided second-order Arnoldi based method of model order

reduction. The first case was an air-filled steel sphere, with a point load

applied to the shell along the axis of symmetry. The second case was an air-

filled, steel cylinder with clamped ends, which was excited by a load normal

to the surface of the shell.

The models were also analysed using the direct inversion technique in

ANSYS, and the cylindrical model was analysed using the one-sided Arnoldi

based reduced order modelling technique. True and relative error functions

were calculated between the Arnoldi and direct ANSYS models, and conver-
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gence models were also compared. Solution times for the models and tech-

niques were also compared.

Structural damping was also considered in this work in the form of pro-

portional damping, with different values of damping. Although this results

in an explicit participation of the damping matrix, which requires direct in-

version, there is no reduction in the ROM efficiency as expressed by the error

functions and the solution times.

The results demonstrated a significant increase in efficiency of the two-

sided Arnoldi method, in comparison with the one-sided Arnoldi method,

although both methods showed an improvement of computational efficiency

of two orders of magnitude in comparison with the Direct method in AN-

SYS. The two-sided Arnoldi method required a smaller number of conver-

gence vectors, and gave better local accuracy around the expansion points.

Additionally, the underlying second order structure of the original problem

is preserved. For a comparison with mode-based (coupled and uncoupled)

methods for strongly coupled problems, the reader is reffered to [17]. As a

concluding remark, it is worth noting that, the ROM methods discussed in

this paper are particularly suitable for low to mid frequency vibro-acoustic

design and optimization, where there is relatively low modal density.
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