1,176 research outputs found
Damping of a nanomechanical oscillator strongly coupled to a quantum dot
We present theoretical and experimental results on the mechanical damping of
an atomic force microscope cantilever strongly coupled to a self-assembled InAs
quantum dot. When the cantilever oscillation amplitude is large, its motion
dominates the charge dynamics of the dot which in turn leads to nonlinear,
amplitude-dependent damping of the cantilever. We observe highly asymmetric
lineshapes of Coulomb blockade peaks in the damping that reflect the degeneracy
of energy levels on the dot, in excellent agreement with our strong coupling
theory. Furthermore, we predict that excited state spectroscopy is possible by
studying the damping versus oscillation amplitude, in analogy to varying the
amplitude of an ac gate voltage.Comment: 4+ pages, 4 figure
Magnetization plateaus of SrCu_2(BO_3)_2 from a Chern-Simons theory
The antiferromagnetic Heisenberg model on the frustrated Shastry-Sutherland
lattice is studied by a mapping onto spinless fermions carrying one quantum of
statistical flux. Using a mean-field approximation these fermions populate the
bands of a generalized Hofstadter problem. Their filling leads to the
magnetization curve. For SrCu_2(BO_3)_2 we reproduce plateaus at 1/3 and 1/4 of
the saturation moment and predict a new one at 1/2. Gaussian fluctuations are
shown to be massive at these plateau values.Comment: 4 pages, 5 figure
Unconventional magnetization plateaus in a Shastry-Sutherland spin tube
Using density matrix renormalization group (DMRG) and perturbative continuous
unitary transformations (PCUTs), we study the magnetization process in a
magnetic field for all coupling strengths of a quasi-1D version of the 2D
Shastry-Sutherland lattice, a frustrated spin tube made of two orthogonal dimer
chains. At small inter-dimer coupling, plateaus in the magnetization appear at
1/6, 1/4, 1/3, 3/8, and 1/2. As in 2D, they correspond to a Wigner crystal of
triplons. However, close to the boundary of the product singlet phase, plateaus
of a new type appear at 1/5 and 3/4. They are stabilized by the localization of
{\it bound states} of triplons. Their magnetization profile differs
significantly from that of single triplon plateaus and leads to specific NMR
signatures. We address the possibility to stabilize such plateaus in further
geometries by analyzing small finite clusters using exact diagonalizations and
the PCUTs.Comment: Final version as published in EP
Control of quality factor of atomic force microscopy cantilever by cavity optomechanical effect
Quality factor plays a fundamental role in dynamic mode atomic force
microscopy. We present a technique to modify the quality factor of an atomic
force microscopy cantilever within a Fabry-P\'erot optical interferometer. The
experimental setup uses two separate laser sources to detect and excite the
oscillation of the cantilever. While the intensity modulation of the excitation
laser drives the oscillation of the cantilever, the average intensity can be
used to modify the quality factor via optomechanical force, without changing
the fiber-cantilever cavity length. The technique enables users to optimize the
quality factor for different types of measurements without influencing the
deflection measurement sensitivity. An unexpected frequency shift was also
observed and modelled as temperature dependence of the cantilever's Young's
modulus, which was validated using finite element simulation. The model was
used to compensate for the thermal frequency shift. The simulation provided
relations between optical power, temperature, and frequency shift.Comment: 7 pages, 4 figure
Magnetization plateaux in the classical Shastry-Sutherland lattice
We investigated the classical Shastry-Sutherland lattice under an external
magnetic field in order to understand the recently discovered magnetization
plateaux in the rare-earth tetraborides compounds RB. A detailed study of
the role of thermal fluctuations was carried out by mean of classical spin
waves theory and Monte-Carlo simulations. Magnetization quasi-plateaux were
observed at 1/3 of the saturation magnetization at non zero temperature. We
showed that the existence of these quasi-plateaux is due to an entropic
selection of a particular collinear state. We also obtained a phase diagram
that shows the domains of existence of different spin configurations in the
magnetic field versus temperature plane.Comment: 4 pages, proceedings of HFM200
Evolution of the magnetic phase transition in MnO confined to channel type matrices. Neutron diffraction study
Neutron diffraction studies of antiferromagnetic MnO confined to MCM-41 type
matrices with channel diameters 24-87 A demonstrate a continuous magnetic phase
transition in contrast to a discontinuous first order transition in the bulk.
The character of the magnetic transition transforms with decreasing channel
diameter, showing the decreasing critical exponent and transition temperature,
however the latter turns out to be above the N\'eel temperature for the bulk.
This enhancement is explained within the framework of Landau theory taking into
consideration the ternary interaction of the magnetic and associated structural
order parameters.Comment: 6 pages pdf file, including 4 figures, uses revtex4.cl
Hole Dynamics in the Orthogonal-Dimer Spin System
The dynamics of a doped hole in the orthogonal-dimer spin system is
investigated systematically in one, two and three dimensions. By combining the
bond-operator method with the self-consistent
Born approximation, we argue that a dispersive quasi-particle state in the
dimer phase is well defined even for quasi-two-dimensional systems. On the
other hand, a doped hole in the plaquette-singlet phase hardly itinerates,
forming an almost localized mode. We further clarify that although the
quasi-particle weight in the dimer phase is decreased in the presence of the
interchain coupling, it is not suppressed but even enhanced upon the
introduction of the interlayer coupling.Comment: 8 pages, 10 figure
Exact ground state and kink-like excitations of a two dimensional Heisenberg antiferromagnet
A rare example of a two dimensional Heisenberg model with an exact dimerized
ground state is presented. This model, which can be regarded as a variation on
the kagome lattice, has several features of interest: it has a highly (but not
macroscopically) degenerate ground state; it is closely related to spin chains
studied by earlier authors; in particular, it is probably the first genuinely
two-dimensional quantum system to exhibit domain-wall-like ``kink'' excitations
normally found only in one-dimensional systems. In some limits it decouples
into non-interacting chains, purely dynamically and not because of weakening of
interchain couplings: indeed, paradoxically, this happens in the limit of
strong coupling of the chains.Comment: 4 pages, revtex, 5 figures included via epsfi
High Resolution Study of Spin Excitations in the Shastry-Sutherland Singlet Ground State of SrCu2(BO3)2
High resolution, inelastic neutron scattering measurements on SrCu2(BO3)2
reveal the dispersion of the three single triplet excitations continuously
across the (H,0) direction within its tetragonal basal plane. These
measurements also show distinct Q dependencies for the single and multiple
triplet excitations, and that these excitations are largely dispersionless
perpendicular to this plane. The temperature dependence of the intensities of
these excitations is well described as the complement of the dc-susceptibility
of SrCu2(BO3)2.Comment: 4 pages, 4 figures. Submitted to PR
- …