We present theoretical and experimental results on the mechanical damping of
an atomic force microscope cantilever strongly coupled to a self-assembled InAs
quantum dot. When the cantilever oscillation amplitude is large, its motion
dominates the charge dynamics of the dot which in turn leads to nonlinear,
amplitude-dependent damping of the cantilever. We observe highly asymmetric
lineshapes of Coulomb blockade peaks in the damping that reflect the degeneracy
of energy levels on the dot, in excellent agreement with our strong coupling
theory. Furthermore, we predict that excited state spectroscopy is possible by
studying the damping versus oscillation amplitude, in analogy to varying the
amplitude of an ac gate voltage.Comment: 4+ pages, 4 figure