40 research outputs found

    Papillorenal Syndrome-Causing Missense Mutations in PAX2/Pax2 Result in Hypomorphic Alleles in Mouse and Human

    Get PDF
    Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice

    A polarizing situation: Taking an in-plane perspective for next-generation near-field studies

    Full text link

    Adiabatic Nano-Focusing of Plasmons by Sharp Metallic Wedges

    Get PDF
    This paper demonstrates the possibility of efficient adiabatic nano-focusing of plasmons by a sharp triangular metal wedge. Geometrical optics approach and the approximation of continuous electrodynamics are used for the analysis. In particular, it is demonstrated that both the phase and group velocities of an incident anti-symmetric (with respect to the magnetic field) plasmon tend to zero at the tip of the wedge, and the plasmon adiabatically slows down, eventually dissipating in the metal. Typically, the amplitude of the plasmon significantly increases near the wedge tip, but this increase is finite even in the absence of dissipation in the metal. The dependence of the local field enhancement near the tip on structural parameters, dissipation in the metal, angle of incidence, etc. is analyzed in this paper. It is also shown that an anti-symmetric film plasmon can effectively be guided by a triangular metal wedge, forming a wedge plasmon mode that is localized near the tip of the wedge and propagates along this tip. A new existence condition for these localized wedge plasmons is derived and discussed
    corecore