239 research outputs found

    Excited states and energy transfer among DNA bases in double helices

    Get PDF
    International audienceThe study of excited states and energy transfer in DNA double helices has recently gained new interest connected to the development of computational techniques and that of femtosecond spectroscopy. The present article points out contentious questions regarding the nature of the excited states and the occurrence of energy transfer and shows how they are currently approached. Using as example the polymer poly(dA)·poly(dT), composed of about 2000 adenine–thymine pairs, a model is proposed on the basis of time-resolved measurements (fluorescence decays, fluorescence anisotropy decays and fluorescence spectra, obtained with femtosecond resolution), associated to steady-state spectra. According to this qualitative model, excitation at 267 nm populates excited states that are delocalized over a few bases (excitons). Ultrafast internal conversion directs the excited state population to the lower part of the exciton band giving rise to fluorescence. Questions needing further investigations, both theoretical and experimental, are underlined with particular emphasis on delicate points related to the complexity and the plasticity of these systems

    Fluorescence of DNA Duplexes: From Model Helices to Natural DNA

    Get PDF
    International audienceRecent fluorescence studies of DNA duplexes with a simple repetitive base sequence have revealed important collective effects which are very sensitive to conformational disorder. In contrast to the monomeric chromophores, whose fluorescence lifetimes are shorter than 1 ps, the fluorescence decays of duplexes span several decades of time. The occurrence of excitation energy transfer, evidenced by the decay of the fluorescence anisotropy on the femtosecond time scale, is a common feature of all of the examined systems. It is explained by the existence of Franck-Condon exciton states, in line with the Vabsorption spectra. Understanding the nature of the long-lived excited states, whose emission dominates the steady-state fluorescence spectrum of natural DNA, will be one of the challenges for the years to come

    DNA Fluorescence

    Get PDF
    rie

    DNA/RNA: Building Blocks of Life Under UV Irradiation

    Get PDF
    International audienceDuring the last 10 years, intense experimental and theoretical work has proven the existence of ultrafast nonradiative decay routes for UV-excited monomeric nucleic acid bases, accounting for their high photostability. This mechanism has been explained by the occurrence of easily accessible conical intersections connecting the first excited ππ* state with the ground state. However, recent studies of substituent and solvent effects indicate that the situation is more complicated than what was initially thought, notably by the presence of dark excited states. Moreover, the actual shape of the excited-state potential energy surface may induce nonexponential dynamics. Further efforts are needed in order to clarify how various environmental factors affect the structural and dynamical aspects of the nucleic acid base excited states

    Ultrafast excited state deactivation and energy transfer in guanine-cytosine DNA double helices

    Get PDF
    International audienceThe stability of DNA components with respect to UV radiation is considered to be a prerequisite for the development of the genetic code. But it is also known that UV light absorbed by DNA bases may damage the double helix and lead to carcinogenic mutations.1 The interplay between stability and photodamage depends on the way that the energy of a UV photon is distributed among the electronic excited states of the double helix before it is eliminated as heat. Ultrafast dissipation of the excitation energy is indeed a common property of all the monomeric DNA building blocks: the major part of the excited state population of nucleosides and nucleotides in aqueous solution lives for less than one picosecond.2,3 When applied to double helices, composed exclusively of adenine-thymine base pairs (A-T duplexes, both homopolymeric and alternating), femtosecond spectroscopy reveals a different picture: organization of the bases within duplexes causes an overall lengthening of the excited state lifetimes.4-9 This is due to the emergence of new excited states, shared between at least two bases. The existence of delocalized excited states allows ultrafast energy transfer to occur5,8-10 by-passing the prerequisites of Förster transfer which are not fulfilled in the case of DNA bases

    High-Energy Long-Lived Excited States in DNA Double Strands

    Get PDF
    International audienceDark DNA light: Dark excited states of alternating GC double strands emit fluorescence at 4000 cm-1 higher energy (see spectrum) and with four orders of magnitude longer lifetime compared to the bright * states. Such high-energy long-lived excited states are expected to play a key role in the DNA photoreactivity associated with the appearance of carcinogenic mutations

    Femtosecond fluorescence studies of DNA/RNA constituents

    Get PDF
    International audienceIn this overview, femtosecond fluorescence studies of various DNA constituents are presented, ranging from the monomeric chromophores to different model helices. In order to interpret the experimental results in terms of fundamental processes on the molecular scale they are discussed in the light of recent theoretical calculations. The ultrafast fluorescence decay observed for the monomers is explained by the involvement of highly efficient conical intersections (CI) between the first singlet excited state and the ground state. For the model helices, the picture is more complex, but fluorescence anisotropy data reveal collective effects

    Excited States and Energy Transfer in G-Quadruplexes

    Get PDF
    International audienceDNA nanostructures formed by association of four oligonucleotides d(TGGGGT) (TG4T quadruplexes) are studied by steady-state and time-resolved optical spectroscopy with femtosecond resolution using fluorescence upconversion. A comparison between single-stranded and four-stranded structures and the corresponding stoichiometric mixture of noninteracting nucleotides shows how horizontal and vertical organization affects the properties of the excited states. Emission from guanine excimers is observed only for single strands, where conformational motions favor their formation. Quadruplex fluorescence arises from a multitude of excited states generated via electronic coupling between guanines; the average fluorescence lifetime is longer and the fluorescence quantum yield higher compared to those of noninteracting nucleotides. The fluorescence anisotropy recorded on the subpicosecond time scale, where molecular motions are hindered, reveals that energy transfer takes place among the bases composing the nanostructure. These results are in line with the conclusions drawn from similar studies on model DNA duplexes

    UV Spectra and Excitation Delocalization in DNA: Influence of the Spectral Width

    Get PDF
    The singlet excited states of the model DNA duplex (dA)10.(dT)10 are studied. Calculations are performed in the exciton theory framework. Molecular dynamics calculations provide the duplex geometry. The dipolar coupling is determined using atomic transition charges. The monomer transition energies are simulated by Gaussian functions resembling the absorption bands of nucleosides in aqueous solutions. Most of the excited states are found to be delocalized over at least two bases and result from the mixing of different monomer states. Their properties are only weakly affected by conformational changes of the double helix. On average, the highest oscillator strength is carried by the upper eigenstates. The duplex absorption spectra are shifted a few nanometers to higher energies with respect to the spectra of noninteracting monomers. The states with larger spatial extent are located close to the maximum of the absorption spectrum

    Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

    Get PDF
    International audienceThe room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed
    corecore