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Fluorescence of DNA Duplexes: From Model Helices to
Natural DNA

Dimitra Markovitsi,* Thomas Gustavsson and Igna¢aya

Laboratoire Francis Perrin, CEA/DSM/IRAMIS/SPANMCNRS URA 2453, CEA/Saclay,
91191 Gif-sur-Yvette, France

Abstract

Recent fluorescence studies of DNA duplexes withpe repetitive base sequence
have revealed important collective effects whicle aery sensitive to conformational
disorder. In contrast to the monomeric chromophoresose fluorescence lifetimes are
shorter than 1 ps, the fluorescence decays of deplepan several decades of time. The
occurrence of excitation energy transfer, evidenbgdthe decay of the fluorescence
anisotropy on the femtosecond time-scale, is a comi@ature of all the examined systems. It
is explained by the existence of Franck-Condontercitates, in line with the UV absorption
spectra. Understanding the nature of the long-limecited states, whose emission dominates
the steady-state fluorescence spectrum of natux#,Dvill be one of the challenges for the

years to come.

Keywords: DNA fluorescence, time-resolved specinpyc DNA excitons, conformational

disorder, biophotonics



In biology and genetics the term “DNA fluorescencetelated to fluorescent probes,
largely used for following structural and functibaapects of nucleic acids. Yet, nucleic acids
do emit fluorescence albeit with a very low fluaressce quantum yield, on the order of'i0
room temperature. Fluorescence spectroscopy, whichides information about both the
energy and the relaxation of the singlet electraxcited states, is a precious tool for the
understanding of the primary processes induced by r&diation, ultimately leading to
carcinogenic mutationisNatural DNA is a huge multichromophoric system posed of four
different monomeric units (nucleotides: dAMP: 2’estgadenosine 5'-monophosphate; TMP:
thymidine 5'-monophosphate; dGMP: 2’-deoxyguanosttenonophosphate; dCMP: 2'-
deoxycytidine 5'-monophosphate) rendering the pmetation of experimental results
extremely difficult? Therefore, model duplexes, composed of a singbe tyf base pairs
(adenine-thymine: AT or guanine-cytosine: GC), hairece many years become a favorite
subject for spectroscopic studies.Such model DNA duplexes have recently attracted
attention for their potential applications in théld of molecular electronics and
optoelectronic§® This perspective greatly increases the interastHe characterization of
their optical properties.

Here, we focus on AT and GC duplexes with homopelyoor alternating sequences.
We follow their fluorescence over several decadese, starting from the directly excited
Franck-Condon (FC) states to long-lived states aittarized by nanosecond lifetimes. We
stress that an understanding of their excited stasmnot be reduced to only a sequence
effect. One has to realize that many other facitss come into play because of the structural
flexibility of the examined systems. All these fat need to be considered in order to
disentangle the puzzling behavior of natural DNA.

The very first step in fluorescence studies is @btuelated to the absorption process

leading to the population of bright states. Goirggrf mononucleotides to duplexes, important



changes in the absorption spectra can be obséfébifferent theoretical approaches have
tempted to explain this behavior during the past years. Calculations have been performed
for duplexes composed of several base pairs ifrénee of the exciton theory but neglecting
orbital overlap*!’ Such interactions were taken into account in quantchemical
calculations carried out for smaller systefhi& which pointed out the parentage between
Frenkel excitons and charge transfer excifdnBespite the different assumptions used, a
common feature emerged: the FC excited states pfedes are delocalized on several
chromophores. This delocalization persists evethénpresence of conformational disorder
but depends on the sequence. It is higher for G&eslas® in which structural fluctuations
are weaker due to the existence of three hydrogedsinstead of two for AT duplex&s.
This is illustrated in Figure 1 (left panel) whettee number of coherently coupled bases,
guantified by the participation ratio, is represehtfor the FC excited states of

(dGdC)- (dGdC} and (dA)o (dTho.
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Figure 1. Left: participation ratios corresponding to thdrtth Frank-Condon excited states of
(dGdC)- (dGdC}'® (blue) and (dA): (dThe' (red) averaged over 100 duplex conformations. Righ
distribution of the oscillator strength over thértiheigenstates associated with two different gibu
state conformations of (degC-:(jdeC}.16



From the above mentioned theoretical studies, italme quite clear that the
geometrical arrangement of the bases within duglexfich governs the electronic coupling,
will be a crucial parameter for the propertieshait excited states. As DNA duplexes exhibit
continuous conformational motions, spectroscopida daollected for bulk solutions
correspond to an average of a large number of cordiions. An example is shown in Figure
1 (right panel) where the distribution of the dstdr strength over the thirty FC excites states
of (dGdC})-(dGdC} is plotted for two different conformation$ Evidently, conformational
motions of a given duplex will affect the relaxatiof its excited states and, consequently, its
fluorescence properties. The corollary is that dagtor having an impact on the
conformational motions of the duplex will impingen ats fluorescence. A striking
demonstration of this is the role of the duplexesihose increase enhances the collective
behavior. As shown in Figure 2, the steady-staterfiscence spectra of polymeric duplexes
are narrower and their average fluorescence decarded either by fluorescence
upconversion (FU) or time-correlated single phatoanting (TCSPC), are slower than those
of the oligomeric analogués? Therefore, we focus below on polymeric systemsrifer to
outline the sequence effect. But before discusdinig aspect, we insist on some

“experimental details” which are important for #tedy of DNA fluorescence.

Conformational motions of DNA duplexes play a key role in the collective behavior of

their excited states and affect their fluorescence properties.

As mentioned above, fluorescence of DNA duplexegery sensitive to other factors.
Thus, the presence of various chemicals (addes, sddhols....) in the soluti6has well as
the photodamage provoked during the measuremertm seriously alter the results. We

emphasize that, although the formation of photopctsl is restricted to one or two bases,



subsequent structural changes may be more extéhdédcting the electronic coupling and
the relaxation of the excited states. In ordenmicicontamination of the fluorescence signals
with photons emitted from damaged helices it isongnt to keep the laser intensity as low as
possible, use a sufficiently large ratio of molesutompared to that of the photons absorbed
during the measurement and avoid local accumulatibrphotoproducts. However, the
ultimate test is to check if successive signalsomded with the same solution are

reproducible?®

wavelength / nm time/ ps
300 350 400 450 0 1 2 3 4 5 6

1.0 1
0.8 -
0.6 -
0.4
0.2

1.0 1
0.8 -
0.6 -
0.4 -

0.2

0.0

normalised fluorescence intensity / a.u.

300 400 500 600 O 5 10 15 20
wavelength / nm time/ns

Figure 2. Size effect on the steady state fluorescencersp@eft) and the fluorescence decays (right)
determined for (dA) (dT),* (blue: solid line: n = 1000, dashed line: n = a8yl (dGdG) (dGdC)*
(red: solid line: n = 1000, dashed line: n = 10)floprescence upconversion (emission wavelength:
330 nm) and time-correlated single photon counfamgission wavelength: 305 nm), respectively.

By applying such experimental protocols, we havengked how the base sequence
affects the emission from model duplexes dissolwve@.1 M phosphate buffer containing
0.25 M NaCl and compared them to natural DNA stdidirder exactly the same conditions.
The time-resolved fluorescence was measured usogrenon laser excitation source (150
fs; 267 nm) and two different detection techniqugd,and TCSPC.

A common characteristic of various model duplexescerns their fluorescence

guantum yield. Although higher than that of monaleotides, it remains very low, on the



order of 1¢f. This is shown in Figure 3 (left panel) where sheady-state emission spectra of
polymeric duplexes are presented > together with that of TMP, whose fluorescence
quantum yield is 1.54x10%* As in the case of monomeric chromophores, noratiei
routes are the dominant deactivation processehéoexcited states of duplexes. The question
arises whether the non-radiative deactivation paglesating in polymeric duplexes composed
of hundreds of base pairs and in the much longeuralaDNA™ are the same as those
described for the monomeric building blodRdn this respect, the time dependence of the

fluorescence could bring some insight.
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Figure 3. Steady-state fluorescence spectra (left) andhligton of the emitted photons per decade of
time (right) determined for the polymeric model btixes, poly(dAdT)-poly(dAdT) (dark red),
poly(dA)- poly(dT) (blue), poly(dGdC)- poly(dGdC) @eand poly(dG)- poly(dC) (green), and purified
genomic calf thymus DNA (black), following excitati at 267 nm. Arrows denote the emission
wavelength. The spectral area is representatiieeofluorescence quantum yiefg for comparison
the TMP spectrumg(= 1.54x10) is shown in grey.

An important outcome of the recent fluorescencelistuis that excitation energy
transfer takes place among bases in all the examinedel duplexe$*'** This was

evidenced by probing the fluorescence anisotropythan femtosecond time-scale, much



before any important structural motions can ocdtuguyre 4, left panel). The fluorescence
anisotropy of the duplexes was found to be lower @andecay more rapidly than that of the
stoichiometric mixture of monomeric chromophoreakiing into account the time-resolution
of the experimental set-up, the onset of the engemsfer process was evaluated to be shorter
than 100 fs. It is highly unlikely that such anratast energy transfer proceeds via a Forster
mechanism considering, in particular, the very éar§tokes shift associated with the
monomeric chromophorés.In contrast, the existence of delocalized excitates allows
ultrafast energy transfer via intraband scatterirag evidenced, for example, for

photosynthetic antennas>’

Excitation energy transfer, involving Franck-Condon excited states delocalized over

several bases, takes place in model duplexes on the femtosecond time-scale.

The fluorescence decays of the bright excited stateasured by FU depend strongly
on the base sequence. The slowest ones are obseryemmopolymeric AT duplexes and the
fastest for alternating GC, the alternating AT éxing an intermediate behavior (Figure 4,
right panel). The average lifetimes of these dugseare respectively long&rshortet? or
equaf* to those of the stoichiometric mixture of nucldes. But fluorescence decays alone
do not inform about the spatial extent of the angtstates. Such evidence is provided by the
dependence of the fluorescence anisotropy decayiseoemission wavelength (Figure 4, left
panel) as described above. The rapid decay obsearvettasts with the behavior of the
monomeric chromophores, which proves, that, at leagially, emission from exciton states

occurs>>?*
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Figure 4. Left: fluorescence anisotropy decays determinedofily(dAdT)-poly(dAdT§* at 330 nm
(dashed line) and 420 nm (dotted line) determingdflbborescence upconversion; the anisotropy
corresponding to an equimolar mixture of dAMP andPTis shown in grey. Right: Fluorescence
decays recorded by fluorescence upconversion at 880 for poly(dA)-poly(dT}" (blue),
poly(dAdT)- poly(dAdT§* (dark red) and poly(dGdC)- poly(dGd€jred).

The fluorescence decays of polymeric duplexes dezbby TCSP&>3 show just
the opposite trend than their counterpart detebiedU. They become slower and slower
going from homopolymeric AT, to alternating AT afutther to GC sequences (Figure 3,
right panel). It is tempting to link the fluorescenquenching occurring on the femtosecond

time-scale to the appearance of the emission gelaiimes. In other words, it is as though the

bright states were trapped by weakly emitting “datiates.

The fluorescence decays of duplexes span several decades of time, the nanosecond
components being dominant for those composed of guanine-cytosine pairs as well as for

natural DNA.

Let us now consider the steady-state fluorescepeetm in the light of the time-
resolved measurements. Those of alternating duplexe clearly different from the
corresponding spectra recorded on the femtosedareistale’*?® But this is not true for

homopolymeric AT duplexes for which the major paifrthe photons are emitted within the



first 10 ps>>* The steady-state spectra of the other examinagesegs surprisingly contain
an emission band located around 300 egn,at higher energy than that of the bright states
recorded by FU and peakingat 330 nm. In the case of GC duplexes, this high gnpegk
corresponds to an excited state decaying on theseannd time-scafé:® In addition to the
300 nm emission band, fluorescence from excite@stamitting at longer wavelengths than
those of the monomeric chromophores has been ddtdor homopolymeric G& and
alternating AT duplexe¥. For the latter sequence, the low energy band sagmed to
exciplex emissiori>*°

Exciplexes were evoked in the early studies of natDNA>*" and associated with
fluorescence components decaying on the nanosdaoeescale. But no exciplex/excimer
band is present in the steady-state fluorescerersin of purified calf thymus DNA (Figure
3) which is similar to that of the stoichiometridxtare of the constitutive nucleotid®sas
well as to that of poly(dA)-poly(dT), peaking at 732nm. Yet, in the case of
poly(dA)- poly(dT), only 16% of the photons are dstat times longer than 10 ps, whereas
this part amounts to 98 % for natural DNA, closehte behavior of GC duplex&<° (Figure
3). We have thus the puzzling situation that therit.scence of natural DNA is monomer-like
but decays on the nanosecond time-scale.

Before looking toward the future, we remark thaice the first study performed for a
DNA model duplex with femtosecond resolutiSnmany efforts were dedicated by us and
other group®**to explore the behavior of short-lived excitedesta The characterization of
the sequences examined here is almost completewewen if these measurements cannot
yet give the whole picture about all the deactatioutes.

Regarding the long-lived excited states, the siimat more obscure. One could think
that the high energy long-lived components deteechifor GC duplexes are associated to a

very small fraction of bright states which escapled non-radiative processes leading to



ground state recovery. Yet, considering their epetgey cannot be correlated to excited
states localized on single chromophores. It woel@llso surprising if excitons extending over
several bases keep their coherence over severdlass.probably, they correspond to excited
states with very small oscillator strength. Conssdly, their population should not be
negligible. Taking into account the fluorescencargum yield and the fluorescence lifetime
of alternating GC polymers and assuming a radidiiggme of 1 us, their “dark” population
can be estimated to 20%. Our understanding of ding-lived emitting states of model
duplexes, as well as of their connection with thos@atural DNA, would benefit from the
determination of time resolved spectra on the tsvee of hundreds of ps and ns and the
effect of the emission wavelength on the fluoreseeamisotropy.

So far, fluorescence measurements on DNA duplexa® wonducted by using a
unique excitation wavelength, close to the absonpthaximum. Studying systematically the
dependence of the fluorescence properties as édaraf the energy deposited on the system
would allow detecting different paths that conttdbuo the excited state relaxation, as
reported already for mono-nucleotidés.

From an experimental point of view, the “Holy Gtaiegarding DNA fluorescence
would be the detection of emission from individudlplexes. Measurements on single
macromolecules are expected to reveal conformdtieffacts and the possible interplay
between emitting and dark excited states, as ajraabieved for other biological systeffts.
The realization of such experiments for DNA is al hallenge.

On the theoretical side, the description of theitedc state relaxation to the
nanosecond time-scale is also a difficult taskoriher to obtain a realistic picture which can
be directly compared to experimental results, datmns have to take into account the
various factors that affect the fluorescence prioger Although some attempts in that

direction have been accomplish€d®“*®many obstacles still have to be overcome. Adapting

10



and combining various computational methods willhieeessary in order to incorporate both
dipolar and orbital overlap interactions, to coesithe role of water molecules and counter-
ions in the relaxation process while following cammhational motions. At this point it is
important to underline that, in order to be meafuhgthis task must be carried out for
sufficiently large systems. The question is whahes minimum size that has to be considered
in the calculations to be relevant of the experitaledata? A feedback from experiments is
needed at this point. We have mentioned aboventttateable differences are observed in the
fluorescence properties of the examined model deglevhen going from eicosamers to
polymers composed of hundreds of base pairs (Figuréhe enhanced collective behavior of
the polymeric duplexes was attributed to reducenfarmational disorde?® However, it is
important to stress that polymers are produced ibghlemical methods ensuring efficient
base-pairing. In contrast, oligomers are prepargdamnealing of complementary single
strands; for simple repetitive sequences, slippphghe two single strands may lead to
imperfect base pairing. In addition, fraying at tedges, further decreases the “double-
stranded nature” of the system. Therefore, it woboddinteresting to investigate the size
dependence of spectroscopic properties for oligenmoduced by enzymatic methods.
Another attractive perspective would be to usepiagrwhich, tailored at different sizes, have
already provided valuable insight about exciton plimg,'* charge transport and charge

recombinatiorf®

1 Moreover, the study of such oligomers with compbase sequence will
certainly help to elucidate the paradox of monofiker-fluorescence of natural DNA
decaying on the nanosecond time-scale.

The great complexity of the fluorescence propertieermined for model duplexés
and associated to conformational disorder contragksthe relatively simple picture derived

from transient absorption measureméAts. According to the latter studies, initially

populatedt states relax to energetically low-lying excimersexciplexes with well defined

11



time constants: 150 ps, 50 ps and 7 ps for homaperg AT?>® alternating AT and GC®*’
duplexes, respectively. It would not be astonishiriyese constants were longer than those
determined by fluorescence measurements, becaassietnt absorption experiments may
probe completely dark states. Yet, emission fromrkd states decays at much longer times
compared to transient absorption signals. Recortlargsient absorption spectra, in particular
for polymeric duplexes, would greatly help to etlate this discrepancy. It is worth-noticing
that the first step toward that direction allowesletting the fingerprint of Frenkel excitotis.

In this way one may obtain a global picture of éxeited state relaxation in duplexes, where
Frenkel excitons, charge transfer excitons or polsmay evolve and interalt® possibly
giving rise to delayed fluorescenteTherefore it would be also important to combine th
results of optical spectroscopy obtained upon tiecitation of DNA with the considerable

amount of information accumulated on charge trarisgoapping and recombination in

DNA 49-51,61-63
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