361 research outputs found

    Size-dependent increase in RNA Polymerase II initiation rates mediates gene expression scaling with cell size

    Get PDF
    Cell size varies during the cell cycle and in response to external stimuli. This requires the tight coordination, or ā€œscalingā€, of mRNA and protein quantities with the cell volume in order to maintain biomolecules concentrations and cell density. Evidence in cell populations and single cells indicates that scaling relies on the coordination of mRNA transcription rates with cell size. Here we use a combination of single-molecule fluorescence in situ hybridisation (smFISH), time-lapse microscopy and mathematical modelling in single fission yeast cells to uncover the precise molecular mechanisms that control transcription rates scaling with cell size. Linear scaling of mRNA quantities is apparent in single fission yeast cells during a normal cell cycle. Transcription rates of both constitutive and regulated genes scale with cell size without evidence for transcriptional bursting. Modelling and experimental data indicate that scaling relies on the coordination of RNAPII transcription initiation rates with cell size and that RNAPII is a limiting factor. We show using real-time quantitative imaging that size increase is accompanied by a rapid concentration independent recruitment of RNAPII onto chromatin. Finally, we find that in multinucleated cells, scaling is set at the level of single nuclei and not the entire cell, making the nucleus the transcriptional scaling unit. Integrating our observations in a mechanistic model of RNAPII mediated transcription, we propose that scaling of gene expression with cell size is the consequence of competition between genes for limiting RNAPII

    Size-Dependent Expression of the Mitotic Activator Cdc25 as a Mechanism of Size Control in Fission Yeast [preprint]

    Get PDF
    Proper cell size is essential for cellular function (Hall et al., 2004). Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell size homeostasis are largely mysterious (Marshall et al., 2012). Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range, and returns the population average to that range if it is perturbed (Marshall et al., 2012; Turner et al., 2012; Amodeo and Skotheim, 2015). Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition (Schmoller et al., 2015), while bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average, a mechanism also suggested for budding yeast (Campos et al., 2014; Jun and Taheri-Araghi, 2015; Taheri-Araghi et al., 2015; Tanouchi et al., 2015; Soifer et al., 2016). Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size dependent expression of the mitotic activator Cdc25. The cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cell grow and providing a mechanism for cell to trigger cell division when they reach a threshold concentration of Cdc25. Since regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a wide spread solution to the problem of size control in eukaryotes

    Speech Therapy in the Treatment of Globus Pharyngeus: Development of a Mobile Application to Improve Patient Access

    Get PDF
    Introduction: Globus pharyngeus is a well-known disorder accounting for 3-4% of ENT referrals. Various treatment strategies have been proposed for this condition, including speech and language therapy. The aim of this article is to highlight the evidence-based approach to the development of a mobile application to improve patient access to speech therapy as a treatment for globus pharyngeus. Patients and Methods: A literature search was performed to identify articles exploring the use of speech therapy as a management option for this disorder. A survey of speech and language therapists (SLT) in the UK to determine patient access to this treatment and their views on the development of a mobile application is also described. Results: Four studies were identified, including one randomised controlled study. All articles demonstrate a significant improvement in symptoms following the use of speech therapy. SLTs from 27 departments responded to the survey. The globus pharyngeus patient workload was variable and in excess of 1000 patients per year in some departments. Most respondents supported the development of a mobile application for speech therapy for use by globus pharyngeus patients. Conclusion: Speech therapy is an effective treatment for globus pharyngeus patients. Speech therapy is not available in all NHS Trusts in England and some SLT departments have a high workload. Alternative methods for the delivery of this effective treatment should be considered including the use of mobile applications. It is important to rule out the possibility of upper aerodigestive tract malignancy before referring a patient for speech therapy

    LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq

    Get PDF
    Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast cells lacking the debranching enzyme Dbr1, LaSSO not only accurately identified canonical splicing events, but also pinpointed novel, but rare, exon-skipping events, which may reflect aberrantly spliced transcripts. Compromised intron turnover perturbed gene regulation at multiple levels, including splicing and protein translation. Notably, Dbr1 function was also critical for the expression of mitochondrial genes and for the processing of self-spliced mitochondrial introns. LaSSO showed better sensitivity and accuracy than algorithms used for computational branch-point prediction or for empirical branch-point determination. Even when applied to a human data set acquired in the presence of debranching activity, LaSSO identified both canonical and exon-skipping branch points. LaSSO thus provides an effective approach for defining high-resolution maps of branch-site sequences and intronic elements on a genomic scale. LaSSO should be useful to validate introns and uncover branch-point sequences in any eukaryote, and it could be integrated into RNA-seq pipelines

    The white matter is a pro-differentiative niche for glioblastoma

    Get PDF
    Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency. Tumour cells in contact with white matter acquire pre-oligodendrocyte fate, resulting in decreased proliferation and invasion. Differentiation is a response to white matter injury, which is caused by tumour infiltration itself in a tumoursuppressive feedback loop. Mechanistically, tumour cell differentiation is driven by selective white matter upregulation of SOX10, a master regulator of normal oligodendrogenesis. SOX10 overexpression or treatment with myelination-promoting agents that upregulate endogenous SOX10, mimic this response, leading to niche-independent pre-oligodendrocyte differentiation and tumour suppression in vivo. Thus, glioblastoma recapitulates an injury response and exploiting this latent programme may offer treatment opportunities for a subset of patients

    Size-Dependent Expression of the Mitotic Activator Cdc25 Suggests a Mechanism of Size Control in Fission Yeast

    Get PDF
    Proper cell size is essential for cellular function. Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell-size homeostasis are largely mysterious [ 1 ]. Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range and returns the population average to that range if it is perturbed [ 1, 2 ]. Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition [ 3 ], whereas bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average [ 4ā€“6 ]. Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size-dependent expression of the mitotic activator Cdc25. cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cells grow and providing a mechanism for cells to trigger cell division when they reach a threshold concentration of Cdc25. Because regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a widespread solution to the problem of size control in eukaryotes

    A simple method for directional transcriptome sequencing using Illumina technology.

    Get PDF
    High-throughput sequencing of cDNA has been used to study eukaryotic transcription on a genome-wide scale to single base pair resolution. In order to compensate for the high ribonuclease activity in bacterial cells, we have devised an equivalent technique optimized for studying complete prokaryotic transcriptomes that minimizes the manipulation of the RNA sample. This new approach uses Illumina technology to sequence single-stranded (ss) cDNA, generating information on both the direction and level of transcription throughout the genome. The protocol, and associated data analysis programs, are freely available from http://www.sanger.ac.uk/Projects/Pathogens/Transcriptome/. We have successfully applied this method to the bacterial pathogens Salmonella bongori and Streptococcus pneumoniae and the yeast Schizosaccharomyces pombe. This method enables experimental validation of genetic features predicted in silico and allows the easy identification of novel transcripts throughout the genome. We also show that there is a high correlation between the level of gene expression calculated from ss-cDNA and double-stranded-cDNA sequencing, indicting that ss-cDNA sequencing is both robust and appropriate for use in quantitative studies of transcription. Hence, this simple method should prove a useful tool in aiding genome annotation and gene expression studies in both prokaryotes and eukaryotes

    SNP discovery in the bovine milk transcriptome using RNA-Seq technology

    Get PDF
    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle
    • ā€¦
    corecore