2,098 research outputs found

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Quantum Tests of the Foundations of General Relativity

    Get PDF
    The role of the equivalence principle in the context of non-relativistic quantum mechanics and matter wave interferometry, especially atom beam interferometry, will be discussed. A generalised form of the weak equivalence principle which is capable of covering quantum phenomena too, will be proposed. It is shown that this generalised equivalence principle is valid for matter wave interferometry and for the dynamics of expectation values. In addition, the use of this equivalence principle makes it possible to determine the structure of the interaction of quantum systems with gravitational and inertial fields. It is also shown that the path of the mean value of the position operator in the case of gravitational interaction does fulfill this generalised equivalence principle.Comment: Classical and Quantum Gravity 15, 13 (1998

    The Structure of AdS Black Holes and Chern Simons Theory in 2+1 Dimensions

    Full text link
    We study anti-de Sitter black holes in 2+1 dimensions in terms of Chern Simons gauge theory of anti-de Sitter group coupled to a source. Taking the source to be an anti-de Sitter state specified by its Casimir invariants, we show how all the relevant features of the black hole are accounted for. The requirement that the source be a unitary representation leads to a discrete tower of states which provide a microscopic model for the black hole.Comment: 17 pages, LaTex. The presentation in Section 5 was improved; other minor improvements. Final form of the manuscrip

    Limits on the Time Evolution of Space Dimensions from Newton's Constant

    Full text link
    Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not been included the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10^{-14}yr^{-1}. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present-day variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was at the Planck scale to be less than or equal to 3.09. If the dimension of space when the Universe was at the Planck scale is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.Comment: 22 pages, accepted for publication in Int.J.Mod.Phys.

    Thick planar domain wall: its thin wall limit and dynamics

    Full text link
    We consider a planar gravitating thick domain wall of the λϕ4\lambda \phi^4 theory as a spacetime with finite thickness glued to two vacuum spacetimes on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding spacetimes reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given.Comment: 11 pages, to appear in IJMP

    A New Limit on Signals of Lorentz Violation in Electrodynamics

    Get PDF
    We describe the results of an experiment to test for spacetime anisotropy terms that might exist from Lorentz violations. The apparatus consists of a pair of cylindrical superconducting cavity-stabilized oscillators operating in the TM_{010} mode with one axis east-west and the other vertical. Spatial anisotropy is detected by monitoring the beat frequency at the sidereal rate and its first harmonic. We see no anisotropy to a part in 10^{13}. This puts a comparable bound on four linear combinations of parameters in the general Standard Model extension, and a weaker bound of <4 x 10^{-9} on three others.Comment: 4 pages, 3 figures, 2 table

    Chaotic Inflation with Time-Variable Space Dimensions

    Get PDF
    Assuming the space dimension is not constant but decreases during the expansion of the Universe, we study chaotic inflation with the potential m2ϕ2/2m^2\phi^2/2. Our investigations are based on a model Universe with variable space dimensions. We write down field equations in the slow-roll approximation, and define slow-roll parameters by assuming the number of space dimensions decreases continuously as the Universe expands. The dynamical character of the space dimension shifts the initial and final value of the inflaton field to larger values. We obtain an upper limit for the space dimension at the Planck length. This result is in agreement with previous works for the effective time variation of the Newtonian gravitational constant in a model Universe with variable space dimensions.Comment: 19 pages, To be published in Int.J.Mod.Phys.D. Minor changes to match accepted versio
    corecore