29 research outputs found

    The bright optical flash from GRB 060117

    Get PDF
    We present a discovery and observation of an extraordinarily bright prompt optical emission of the GRB 060117 obtained by a wide-field camera atop the robotic telescope FRAM of the Pierre Auger Observatory from 2 to 10 minutes after the GRB. We found rapid average temporal flux decay of alpha = -1.7 +- 0.1 and a peak brightness R = 10.1 mag. Later observations by other instruments set a strong limit on the optical and radio transient fluxes, unveiling an unexpectedly rapid further decay. We present an interpretation featuring a relatively steep electron-distribution parameter p ~ 3.0 and providing a straightforward solution for the overall fast decay of this optical transient as a transition between reverse and forward shock.Comment: Accepted to A&A, 4 pages, corected few typos pointed out by X.F. W

    The Roadmap to the POEMMA mission

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe ultrahigh-energy cosmic rays (UHECRs) and cosmic neutrinos from space with sensitivity over the full celestial sky. Developed as a NASA Astrophysics Probe-class mission, POEMMA consists of two identical telescopes orbiting the Earth in a loose formation designed to observe extensive air showers (EAS) via air fluorescence and Cherenkov emissions. UHECRs and UHE neutrinos above 20 EeV are observed with the stereo fluorescence technique, while tau neutrinos above 20 PeV are observed via the optical Cherenkov signals produced by up-going EAS generated by the decay of Earth-emerging tau-leptons. The POEMMA satellites are designed to quickly re-orientate to follow up transient cosmic neutrino candidate sources and obtain unparalleled neutrino flux sensitivity. Both observation techniques and the instrument design are being validated by current and upcoming missions, such as Mini-EUSO and EUSO-SPB as part of the JEM-EUSO program, and the Terzina instrument onboard the NUSES SmallSat mission. We discuss the POEMMA science performance and the current roadmap to the POEMMA mission

    Prospects for Cross-correlations of UHECR Events with Astrophysical Sources with Upcoming Space-based Experiments

    Get PDF
    Ultra-high energy cosmic rays (UHECRs) are the messengers of the most extreme physics in the cosmos; however, efforts to identify their origins have thus far been thwarted by the fact that they don’t point back to their sources. Using statistical studies cross-correlating UHECR arrival directions with astrophysical catalogs, the ground-based Pierre Auger Observatory has reported hints of a correlation with nearby starburst galaxies, as well as lower-significance correlations with other classes of astrophysical sources. Space-based UHECR experiments, such as POEMMA and ZAP, will monitor large interaction volumes on the Earth or the Moon. Within a few years of mission operation time, both missions will achieve unprecedented exposures at energies above 40 EeV across the entire sky. We present studies of the cross-correlation between UHECR event arrival directions and astrophysical catalogs as motivated by expectations for the detector performance for POEMMA and ZAP. We find that both POEMMA and ZAP will achieve 5σ discovery reach for many plausible astrophysical scenarios

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources

    Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors

    Get PDF
    Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources

    Measurement of UV light emission of the nighttime Earth by Mini-EUSO for space-based UHECR observations

    Get PDF
    The JEM-EUSO (Joint Experiment Missions for Extreme Universe Space Observatory) program aims at the realization of the ultra-high energy cosmic ray (UHECR) observation using wide field of view fluorescence detectors in orbit. Ultra-violet (UV) light emission from the atmosphere such as airglow and anthropogenic light on the Earth\u27s surface are the main background for the space-based UHECR observations. The Mini-EUSO mission has been operated on the International Space Station (ISS) since 2019 which is the first space-based experiment for the program. The Mini-EUSO instrument consists of a 25 cm refractive optics and the photo-detector module with the 2304-pixel array of the multi-anode photomultiplier tubes. On the nadir-looking window of the ISS, the instrument is capable of continuously monitoring a ~300 km x 300 km area. In the present work, we report the preliminary result of the measurement of the UV light in the nighttime Earth using the Mini-EUSO data downlinked to the ground. We mapped UV light distribution both locally and globally below the ISS obit. Simulations were also made to characterize the instrument response to diffuse background light. We discuss the impact of such light on space-based UHECR observations and the Mini-EUSO science objectives

    EUSO-SPB2 Telescope Optics and Testing

    Get PDF
    The Extreme Universe Space Observatory - Super Pressure Balloon (EUSO-SPB2) mission will fly two custom telescopes that feature Schmidt optics to measure Cherenkov- and fluorescence emission of extensive air showers from cosmic rays at the PeV and EeV-scale, and search for τ-neutrinos. Both telescopes have 1-meter diameter apertures and UV/UV-visible sensitivity. The Cherenkov telescope uses a bifocal mirror segment alignment, to distinguish between a direct cosmic ray that hits the camera versus the Cherenkov light from outside the telescope. Telescope integration and laboratory calibration will be performed in Colorado. To estimate the point spread function and efficiency of the integrated telescopes, a test beam system that delivers a 1-meter diameter parallel beam of light is being fabricated. End-to-end tests of the fully integrated instruments will be carried out in a field campaign at dark sites in the Utah desert using cosmic rays, stars, and artificial light sources. Laser tracks have long been used to characterize the performance of fluorescence detectors in the field. For EUSO-SPB2 an improvement in the method that includes a correction for aerosol attenuation is anticipated by using a bi-dynamic Lidar configuration in which both the laser and the telescope are steerable. We plan to conduct these field tests in Fall 2021 and Spring 2022 to accommodate the scheduled launch of EUSO-SPB2 in 2023 from Wanaka, New Zealand

    EUSO@TurLab project in view of Mini-EUSO and EUSO-SPB2 missions

    Get PDF
    The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the fourth basement level of the Physics Department of the University of Turin. In the past years, we have used the facility to perform experiments related to the observations of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique for JEM-EUSO missions with the main objective to test the response of the trigger logic. In the missions, the diffuse night brightness and artificial and natural light sources can vary significantly in time and space in the Field of View (FoV) of the telescope. Therefore, it is essential to verify the detector performance and test the trigger logic under such an environment. By means of the tank rotation, a various terrestrial surface with the different optical characteristics such as ocean, land, forest, desert and clouds, as well as artificial and natural light sources such as city lights, lightnings and meteors passing by the detector FoV one after the other is reproduced. The fact that the tank is located in a very dark place enables the tests under an optically controlled environment. Using the Mini-EUSO data taken since 2019 onboard the ISS, we will report on the comparison between TurLab and ISS measurements in view of future experiments at TurLab. Moreover, in the forthcoming months we will start testing the trigger logic of the EUSO-SPB2 mission. We report also on the plans and status for this purpose

    An overview of the JEM-EUSO program and results

    Get PDF
    The field of UHECRs (Ultra-High energy cosmic Rays) and the understanding of particle acceleration in the cosmos, as a key ingredient to the behaviour of the most powerful sources in the universe, is of outmost importance for astroparticle physics as well as for fundamental physics and will improve our general understanding of the universe. The current main goals are to identify sources of UHECRs and their composition. For this, increased statistics is required. A space-based detector for UHECR research has the advantage of a very large exposure and a uniform coverage of the celestial sphere. The aim of the JEM-EUSO program is to bring the study of UHECRs to space. The principle of observation is based on the detection of UV light emitted by isotropic fluorescence of atmospheric nitrogen excited by the Extensive Air Showers (EAS) in the Earth’s atmosphere and forward-beamed Cherenkov radiation reflected from the Earth’s surface or dense cloud tops. In addition to the prime objective of UHECR studies, JEM-EUSO will do several secondary studies due to the instruments\u27 unique capacity of detecting very weak UV-signals with extreme time-resolution around 1 microsecond: meteors, Transient Luminous Events (TLE), bioluminescence, maps of human generated UV-light, searches for Strange Quark Matter (SQM) and high-energy neutrinos, and more. The JEM-EUSO program includes several missions from ground (EUSO-TA), from stratospheric balloons (EUSO-Balloon, EUSO-SPB1, EUSO-SPB2), and from space (TUS, Mini-EUSO) employing fluorescence detectors to demonstrate the UHECR observation from space and prepare the large size missions K-EUSO and POEMMA. A review of the current status of the program, the key results obtained so far by the different projects, and the perspectives for the near future are presented

    Simulation studies for the Mini-EUSO detector

    Get PDF
    Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 1021^{21} eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources
    corecore