213 research outputs found

    1H-NMR Study on the Magnetic Order in the Mixture of Two Spin Gap Systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3

    Full text link
    The antiferromagnetic ordering in the solid-solution of the two spin-gap systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H-NMR. The sample with the Cl-content ratio x=0.85 showed a clear splitting in spectra below TN=13.5 K, where the spin-lattice relaxation rate T1-1 showed a diverging behavior. The critical exponent of the temperature dependence of the hyperfine field is found to be 0.33.Comment: 11pages, 4 figure

    The antiferromagnetic order in an F-AF random alternating quantum spin chain : (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3

    Full text link
    A possibility of the uniform antiferromagnetic order is pointed out in an S=1/2 ferromagnetic (F) - antiferromagnetic (AF) random alternating Heisenberg quantum spin chain compound: (CH_3)_2 CHNH_3 Cu(Cl_x Br_{1-x})_3. The system possesses the bond alternation of strong random bonds that take +/- 2J and weak uniform AF bonds of -J. In the pure concentration limits, the model reduces to the AF-AF alternation chain at x=0 and to the F-AF alternation chain at x=1. The nonequilibrium relaxation of large-scale quantum Monte Carlo simulations exhibits critical behaviors of the uniform AF order in the intermediate concentration region, which explains the experimental observation of the magnetic phase transition. The present results suggest that the uniform AF order may survive even in the presence of the randomly located ferromagnetic bonds.Comment: 4 pages, 3 figure

    Muon spin relaxation and rotation study on the solid solution of the two spin-gap systems (CH3)2CHNH3-CuCl3 and (CH3)2CHNH3-CuBr3

    Full text link
    Muon-spin-rotation and relaxation studies have been performed on (CH3_3)2_2CHNH3_3Cu(Clx_xBr1x_{1-x})3_3 with xx=0.85 and 0.95, which are solid solutions of the two isomorphic spin-gap systems (CH3_3)2_2CHNH3_3CuCl3_3 and (CH3_3)2_2CHNH3_3CuBr3_3 with different spin gaps. The sample with xx=0.85 showed a clear muon spin rotation under zero-field below TNT_{\rm N}=11.65K, indicating the existence of a long-range antiferromagnetic order. A critical exponent of the hyperfine field was obtained to be β\beta=0.33, which agrees with 3D-Ising model. In the other sample with xx=0.95, an anomalous enhancement of the muon spin relaxation was observed at very low temperatures indicating a critical slowing down due to a magnetic instability of the ground state

    Interacting Boson Theory of the Magnetization Process of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain

    Get PDF
    The low temperature magnetization process of the ferromagnetic-antiferromagnetic Heisenberg chain is studied using the interacting boson approximation. In the low field regime and near the saturation field, the spin wave excitations are approximated by the δ\delta function boson gas for which the Bethe ansatz solution is available. The finite temperature properties are calculated by solving the integral equation numerically. The comparison is made with Monte Carlo calculation and the limit of the applicability of the present approximation is discussed.Comment: 4 pages, 7 figure

    Field Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    Get PDF
    The multiple reentrant quantum phase transitions in the S=1/2S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with the interchain mean field approximation. It is assumed that the odd-th bond is antiferromagnetic with strength JJ and even-th bond can take the values {\JS} and {\JW} ({\JS} > J > {\JW} > 0) randomly with probability pp and 1p1-p, respectively. The pure version (p=0p=0 and p=1p=1) of this model has a spin gap but exhibits a field induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0<p<10 < p < 1, the antiferromagnetism is induced by randomness at small field region where the ground state is disordered due to the spin gap in the pure case. At the same time, this model exhibits randomness induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between the transverse antiferromagnetic phases and disordered plateau phases with the increase of the magnetic field for moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and the jumps between them, It is also found that the antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.Comment: 5 pages, 8 figure

    4-Chloro­benzothio­amide

    Get PDF
    In the title compound, C7H6ClNS, the dihedral angle between the aromatic ring and the thio­amide fragment is 28.1 (2)°. The structure features a π-stacking inter­action between the aromatic rings with a slight offset of the rings, giving a centroid–centroid separation of 3.7942 (2) Å. There are inter­molecular hydrogen-bonding inter­actions between the amino group and the S atoms

    Thermodynamic properties of a tetramer ferro-ferro-antiferro-antiferromagnetic Ising-Heisenberg bond alternating chain as a model system for Cu(3-Clpy)2_2(N3_3)2_2

    Full text link
    Thermodynamic properties of a tetramer ferro-ferro-antiferro-antiferromagnetic Ising-Heisenberg bond alternating chain are investigated by the use of an exact mapping transformation technique. Exact results for the magnetization, susceptibility and specific heat in the zero as well as nonzero magnetic field are presented and discussed in detail. The results obtained from the mapping are compared with the relevant experimental data of Cu(3-Clpy)2_2(N3_3)2_2 (3-Clpy=3-Chloropyridine).Comment: 10 pages, 1 table, 14 figures, to be presented at CSMAG04 conferenc

    4-Bromo­thio­benzamide

    Get PDF
    The title compound, C7H6BrNS, crystallizes with two mol­ecules in the asymmetric unit. The dihedral angles between the aromatic ring and the thio­amide fragment are 23.6 (4) and 20.5 (3)° in the two mol­ecules. In the crystal, there are inter­molecular N—H⋯S hydrogen-bonding inter­actions between the amine group and the S atoms

    Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering measurements have been performed under the hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl3_3. Below the ordering temperature TN=16.9T_{\rm N}=16.9 K for the hydrostatic pressure P=1.48P=1.48 GPa, magnetic Bragg reflections were observed at the reciprocal lattice points {\mib Q}=(h, 0, l) with integer hh and odd ll, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap closes due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P=1.48P=1.48 GPa was determined.Comment: 4 pages, 3 figures, 3 eps files, jpsj2.cls styl

    Random Bond Effect in the Quantum Spin System (Tl1x_{1-x}Kx_{x})CuCl3_3

    Full text link
    The effect of exchange bond randomness on the ground state and the field-induced magnetic ordering was investigated through magnetization measurements in the spin-1/2 mixed quantum spin system (Tl1x_{1-x}Kx_{x})CuCl3_3 for x<0.36x<0.36. Both parent compounds TlCuCl3_3 and KCuCl3_3 are coupled spin dimer systems, which have the singlet ground state with excitation gaps Δ/kB=7.7{\Delta}/k_{\rm B}=7.7 K and 31 K, respectively. Due to bond randomness, the singlet ground state turns into the magnetic state with finite susceptibility, nevertheless, the excitation gap remains. Field-induced magnetic ordering, which can be described by the Bose condensation of excited triplets, magnons, was observed as in the parent systems. The phase transition temperature is suppressed by the bond randomness. This behavior may be attributed to the localization effect.Comment: 19 pages, 7 figures, 12 eps files, revtex, will appear in PR
    corecore