6,758 research outputs found

    Variability of magnetic field spectra in the Earth's magnetotail

    Get PDF
    We investigate the variability of magnetic fluctuation spectra below 1 Hz in the Earth's plasma sheet using specially selected long observation intervals by Geotail spacecraft. The spectra can be generally described by a negative power law with two kinks. The range between kinks ~0.02–0.2 Hz has the most stable power law index ~2.4–2.6. Indices at the lower and the higher frequencies are more variable and generally increase with power of fluctuations. In the sub-second range fluctuations are strongly localized and indices are closer to 3. At the lower-frequency end indices are about 1.5. The lower kink is usually well defined on average spectra and its frequency tends to increase with activity. Combination of spectrum index α and fractal dimension δ is expected to follow the Berry relation α+2δ=5, but actually is ~5.5

    On the Use of Proof-of-Work in Permissioned Blockchains: Security and Fairness

    Get PDF
    In permissioned blockchains, a set of identifiable miners validates transactions and creates new blocks. In scholarship, the proposed solution for the consensus protocol is usually inspired by the Byzantine fault tolerance (BFT) based on voting rather than the proof-of-work (PoW). The advantage of PoW with respect to BFT is that it allows the final user to evaluate the cost required to change a confirmed transaction without the need to trust the consortium of miners. In this paper, we analyse the problems that arise from the application of PoW in permissioned blockchains. In standard PoW, it may be easy for colluded miners to temporarily reach 50% of the total hash power (HP). Moreover, since mining rewards are not usually expected in permissioned contexts, the problem of balancing the computational efforts among the miners becomes crucial. We propose a solution based on a sliding window algorithm to address these problems and analyse its effectiveness in terms of fairness and security. Furthermore, we present a quantitative, analytical model in order to assess its capacity to balance the hash power provided by heterogeneous miners. Our study considers the trade-off between the need to trust the entire consortium of miners guaranteed by the global HP invested by the mining process and the need to prevent collusion among malicious miners aimed at reaching 50% of the total HP. As a result, the model can be used to find the optimal parameters for the sliding window protocol

    Noise Induced Complexity: From Subthreshold Oscillations to Spiking in Coupled Excitable Systems

    Full text link
    We study stochastic dynamics of an ensemble of N globally coupled excitable elements. Each element is modeled by a FitzHugh-Nagumo oscillator and is disturbed by independent Gaussian noise. In simulations of the Langevin dynamics we characterize the collective behavior of the ensemble in terms of its mean field and show that with the increase of noise the mean field displays a transition from a steady equilibrium to global oscillations and then, for sufficiently large noise, back to another equilibrium. Diverse regimes of collective dynamics ranging from periodic subthreshold oscillations to large-amplitude oscillations and chaos are observed in the course of this transition. In order to understand details and mechanisms of noise-induced dynamics we consider a thermodynamic limit N→∞N\to\infty of the ensemble, and derive the cumulant expansion describing temporal evolution of the mean field fluctuations. In the Gaussian approximation this allows us to perform the bifurcation analysis; its results are in good agreement with dynamical scenarios observed in the stochastic simulations of large ensembles

    Background identification algorithm for future self-triggered air-shower radio arrays

    Full text link
    The study of the ultra-high energy cosmic rays, neutrinos and gamma rays is one of the most important challenges in astrophysics. The low fluxes of these particles do not allow one to detect them directly. The detection is performed by the measuring of the air-showers produced by the primary particles in the Earth's atmosphere. A radio detection of ultra-high energy air-showers is a cost-effective technique that provides a precise reconstruction of the parameters of primary particle and almost full duty cycle in comparison with other methods. The main challenge of the modern radio detectors is the development of efficient self-trigger technology, resistant to high-level background and radio frequency interference. Most of the modern radio detectors receive trigger generated by either particle or optical detectors. The development of the self trigger for the radio detector will significantly simplify the operation of existing instruments and allow one to access the main advantages of the radio method as well as open the way to the construction of the next generation of large-scale radio detectors. In the present work we discuss our progress in the solution of this problem, particularly the classification of broadband pulses.Comment: 6 pages, 1 figur

    Role of Noise in a Market Model with Stochastic Volatility

    Get PDF
    We study a generalization of the Heston model, which consists of two coupled stochastic differential equations, one for the stock price and the other one for the volatility. We consider a cubic nonlinearity in the first equation and a correlation between the two Wiener processes, which model the two white noise sources. This model can be useful to describe the market dynamics characterized by different regimes corresponding to normal and extreme days. We analyze the effect of the noise on the statistical properties of the escape time with reference to the noise enhanced stability (NES) phenomenon, that is the noise induced enhancement of the lifetime of a metastable state. We observe NES effect in our model with stochastic volatility. We investigate the role of the correlation between the two noise sources on the NES effect.Comment: 13 pages, 6 figures, Eur. Phys. J. B, in pres

    Renormalization of the band parameters owing to the phonon interaction in Bi 2Sr 2CaCu 2O 8 - x and determination of the superconducting gap parameters from the temperature dependence of the superconducting current density in YBa 2Cu 3O 7

    Get PDF
    A simple description has been proposed for the renormalization of the conduction band parameters in cuprates owing to the interaction of the current carriers with phonons. Kinks in the quasiparticle dispersion law in the optical phonon mode region (70 meV, compound Bi 2Sr 2CaCu 2O 8 - x) and data on the temperature dependence of the superconducting current density in YBa 2Cu 3O 7 have been analyzed. Ideas of new experiments have been discussed. © 2012 Pleiades Publishing, Ltd
    • …
    corecore