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Abstract. We study a generalization of the Heston model, which consists of two coupled stochastic differen-
tial equations, one for the stock price and the other one for the volatility. We consider a cubic nonlinearity
in the first equation and a correlation between the two Wiener processes, which model the two white noise
sources. This model can be useful to describe the market dynamics characterized by different regimes cor-
responding to normal and extreme days. We analyze the effect of the noise on the statistical properties of
the escape time with reference to the noise enhanced stability (NES) phenomenon, that is the noise induced
enhancement of the lifetime of a metastable state. We observe NES effect in our model with stochastic
volatility. We investigate the role of the correlation between the two noise sources on the NES effect.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 02.50.-r Prob-
ability theory, stochastic processes, and statistics – 05.40.-a Fluctuation phenomena, random processes,
noise, and Brownian motion – 89.75.-k Complex systems

1 Introduction

The presence of noise in physical systems is a well known
phenomenon. It is common opinion that noise affecting
the dynamics of a system introduces some degree of in-
stability to the system itself, but there is evidence that in
some cases the noise can increase the stability of a sys-
tem [1–4]. Noise modeling through the use of the stochas-
tic processes formalism has applications that involve many
systems including physics, biology, ecology [5–7] and even
financial markets [8–10]. The most basic model for finan-
cial market is the geometric Brownian motion [12]. This
model has different drawbacks, it cannot reproduce in fact
three important stylized facts observed in financial time
series: (i) the non Gaussian distribution of returns; (ii)
the fat tails [9,10]; and (iii) the stochastic character of
volatility, which is characterized by long range memory
and clustering [9–11,13]. More complex models have been
developed to reproduce the dynamics of the volatility. It is
worthwhile citing the ARCH [14] and GARCH [15] mod-
els, where the actual volatility depends on the past values
of squared return (ARCH) and also on the past values of
the volatility (GARCH). Another class of models use a sys-
tem of stochastic equations writing the price as a geomet-
ric Brownian motion coupled with a non-constant volatil-

a e-mail: valentid@gip.dft.unipa.it
b e-mail: spagnolo@unipa.it
c http://gip.dft.unipa.it

ity described by a second stochastic differential equation.
The Heston model uses for the volatility a multiplicative
stochastic process characterized by mean reversion [16,17].
The models presented so far have exponential autocorre-
lation function so they are not able to reproduce quanti-
tatively the long range memory observed in real markets.
Nonetheless using values of the characteristic time that are
sufficiently high, they are able to give accurate statistic for
the stock prices, by tuning only few parameters. Another
important characteristic of financial markets is the pres-
ence of different regimes. Markets indeed present days of
normal activity and extreme days where very high or very
low price variations can be observed. These are known as
crash and rally days. A nonlinear Langevin market model
has already been proposed [18], where different regimes
are modelled by means of an effective potential for price
returns. In some circumstances this potential has a cubic
shape with a metastable state and a potential barrier. The
dynamics inside the metastable state represents the days
of normal evolution while the escape after the potential
barrier represents the beginning of a crisis. Metastable
states are ubiquitous in physics and the effect of noise
in such systems has been extensively studied [1–4], but
considering the noise intensity as a parameter (physical
models described by additive stochastic differential equa-
tions for example). Financial markets with their stochastic
volatility are an example of systems where the noise inten-
sity is far from being a constant parameter, but it is indeed
a stochastic process itself. Moreover there is evidence in
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nature that the noise intensity is not a constant parame-
ter and can be modelled as a multiplicative noise [6,7,19].
So it is interesting to abandon the hypothesis of paramet-
ric noise intensity in financial market models as well as in
natural systems.

2 The heston model with a metastable state

The Heston model introduced in the previous section is
described by the following system of coupled stochastic
differential equations [16]

dx(t) = (µ − v(t)/2) · dt +
√

v(t) · dZ(t)

dv(t) = a(b − v(t)) · dt + c
√

v(t) · dW (t). (1)

The price p(t) follows a geometric random walk whose
standard deviation is another stochastic process. Here
x(t) = ln p(t) is the log of the price, Z(t) and W (t) are
uncorrelated Wiener processes with the usual statistical
properties: (i) 〈dZ(t)〉 = 0 and 〈dZ(t)·dZ(t′)〉 = δ(t−t′)dt;
(ii) 〈dW (t)〉 = 0 and 〈dW (t) · dW (t′)〉 = δ(t − t′)dt. The
v(t) process is characterized by mean reversion, i.e. its
deterministic solution has an exponential transient with
characteristic time equal to a−1, after which the pro-
cess tends to its asymptotic value b. The process for
v(t) exhibits the phenomenon of volatility clustering, al-
ternating calm with burst periods of volatility, and has
an exponential autocorrelation function. The smaller the
value of a the longer are the bursts in volatility. Hes-
ton model has been subject of recent investigation by
econophysicists [20–23]. The equations of the system (1)
are well known in finance, they represent respectively the
log-normal geometric Brownian motion stock process used
by Black and Scholes for option pricing [24,25], and the
Cox-Ingersoll-Ross (CIR) mean-reverting stochastic dif-
ferential equation first introduced for interest rate mod-
els [26,27].

Here we consider a generalization of the Heston model,
by replacing the geometric Brownian motion with a ran-
dom walk in the presence of a cubic nonlinearity. This
generalization represents a “Brownian particle” moving
in an effective potential with a metastable state, in or-
der to model those systems with two different dynamical
regimes like financial markets in normal activity and ex-
treme days [18]. The equations of the new model are

dx(t) = −
(

∂U

∂x
+

v(t)
2

)
· dt +

√
v(t) · dZ(t)

dv(t) = a(b − v(t)) · dt + c
√

v(t) · dW (t), (2)

where U is the effective cubic potential U(x) = px3 + qx2,
with p = 2 and q = 3 (see Fig. 1), Z(t) and W (t) are
standard Wiener processes. Let us call xM the abscissa
of the potential maximum and xI the abscissa where the
potential intersects the x axes. The intervals x0 < xI and
I = [xI , xM ] are clearly regions of instability for the sys-
tem. In systems with a metastable state like this, the noise
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Fig. 1. Cubic potential used in the dynamical equation for
the price x(t). The points in the figure indicate the starting
positions used in our simulations.

can originate interesting effects that increase instead of
decrease the stability, by enhancing the lifetime of the
metastable state [1–4]. A good example is the Noise En-
hanced Stability (NES) phenomenon. The mean escape
time τ for a Brownian particle moving throughout a bar-
rier ∆U , with a noise intensity v, is given by the well
known exponential Kramers law [28,29]

τ = A exp
[
∆U

v

]
, (3)

where τ is a monotonically decreasing function of the
noise intensity v, and A is a prefactor which depends
on the potential profile. This is true only if the random
walk starts from initial positions inside the potential well.
When the starting position is chosen in the instability re-
gion x0 < xM , τ exhibits an enhancement behavior, with
respect to the deterministic escape time, as a function of
v. Particularly for initial positions x0 < xI , we have non-
monotonic behavior of τ as a function of v [2,30]. This is
the NES effect and can be explained considering that the
barrier “seen” by the Brownian particle starting at the ini-
tial position x0, that is ∆Uin = U(xmax)−U(x0), is higher
than ∆U . Conversely, ∆Uin is smaller than ∆U as long as
the starting position x0 lyes into the interval I = [xI , xM ].
Therefore for a Brownian particle, whose initial position
x0 is inside the interval I, from a probabilistic point of
view, it is easier to enter into the well than to escape from,
when the particle is entered. So a small amount of noise
can increase the lifetime of the metastable state, causing
a monotonic increase of the lifetime as the noise inten-
sity increases [1,2,4,30]. For a detailed discussion on this
point and different dynamical regimes see references [2,
30]. When v is much greater than ∆U , the Kramers behav-
ior is recovered. The NES effect has been experimentally
observed in a tunnel diode and theoretically predicted in a
wide variety of systems such as for example chaotic map,
Josephson junctions, chemical reaction kinetics, and neu-
ronal dynamics models [1–4]. Our modified Heston model,
characterized by a stochastic volatility and a nonlinear
Langevin equation for the returns, has two limit regimes,
corresponding to the cases a = 0, with only the noise term
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Fig. 2. Mean escape time τ as a function of the mean volatility
b. The other parameters have the fixed values a = 10−2 and
c = 10−2. The six curves correspond to the following values
of the correlation: ρ = −0.8,−0.5,−0.1, 0.1, 0.5, 0.8. The fixed
starting position is x0 = −1.25. The values of the potential
parameters (see Eq. (2)) are: p = 2, q = 3.

in the equation for the volatility v(t), and c = 0 with only
the reverting term in the same equation. This last case cor-
responds to the usual parametric constant volatility case.
In fact, apart from an exponential transient, the volatility
reaches the asymptotic value b. The NES effect should be
observable in the latter case as a function of b, which is
the average volatility. In this case, in fact, we have the
motion of a Brownian particle in a fixed cubic potential
with a metastable state and an enhancement of its lifetime
for particular initial conditions (see Refs. [2,30]).

3 Enhancement of the escape time

The two processes of equations (1) and (2) are actually
uncorrelated. In financial markets the two processes can
be correlated, and a negative correlation between the pro-
cesses is known as leverage effect [31]. Heston model with
correlation has been recently discussed in the scientific
literature [21,23]. Our modified Heston model becomes
therefore

dx(t) = −
(

∂U

∂x
+

v(t)
2

)
· dt +

√
v(t) · dZ(t)

dv(t) = a(b − v(t)) · dt + c
√

v(t) · dWc(t)

dWc(t) = ρ · dZ(t) +
√

1 − ρ2 · dW (t), (4)

where Z(t) and W (t) are uncorrelated Wiener processes
as in equations (1) and (2), and ρ is the cross correlation
coefficient between the noise sources. The investigation is
performed simulating the process of equations (4) with
time integration step ∆t = 0.01, and for the fixed starting
position x0 = −1.25 in the I interval (this initial position
is shown as a black square point in Fig. 1). The absorbing
barrier is located at x = −6.0, and the results are averaged
over 105 escape events. The algorithm used to simulate the
noise sources in equations (4) is based on the Box-Muller
method for generating random processes with a Gaussian

Fig. 3. Mean escape time τ as a function of the model noise
intensity c for two different values of the parameter a: (a) a =
2.0 and (b) a = 20. The value of the parameter b is fixed to
b = 10−2. The fixed starting position x0 and the potential
parameters p and q are the same of Figure 2. The different
curves correspond to the following values of ρ: −0.8 (circle),
0.0 (square), 0.8 (triangle).

distribution. The numerical integration of equations (4) is
done by using the forward Euler method [32].

Our first result shows that the curve τ vs. b is weakly
dependent on the value of the ρ parameter. This is shown
in Figure 2, where all the curves correspond to the region
of the parameters space where the effect is observable.
There is indeed a weak variation in the maximum value.
The highest maximum values correspond to the highest
absolute ρ values. It is worth noting that the correlation
affects directly the noise term in the v(t) equation, and it
has negligible influence on the reverting term of the same
equation.

The curves of τ vs. c however have an evident depen-
dence on the parameter c. This is shown in Figure 3, for
two values of parameter a for which the NES effect is ob-
servable. The correlation affects the position as well as
the value of the maximum of τ (see Fig. 3), but in a dif-
ferent way. The position of the maximum increases only
for very high positive values of the correlation coefficient.
The maximum value of τ increases with positive correla-
tion but decreases with negative correlation. This effect is
more evident for the higher value of a, as shown in Fig-
ure 3b. To comment this result we first note that a neg-
ative correlation between the logarithm of the price and
the volatility means that a decrease in x(t) induces an in-
crease in the volatility v(t), and this causes the Brownian
particle to escape easily from the well. As a consequence
the mean lifetime of the metastable state decreases, even
if the nonmonotonic behavior is still observable. On the
contrary, when the correlation ρ is positive, the Brownian
particle stays more inside the well, decrease in x(t) indeed
is associated with decrease in the volatility. The escape
process becomes slow and this increases further the life-
time of the metastable state, causing an increase in the
value of the maximum of the curve of Figure 3. To illus-
trate better this aspect and the behaviour of Figures 2
and 3 near the maximum, we plot the values τmax of the
maximum as a function of the correlation coefficient ρ and
we show these curves in Figure 4. Specifically in Figure 4a
we report the values of τmax related to the curves of τ
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Fig. 4. The values of τmax as a function of the correlation
coefficient of the curves reported in Figures 2 and 3. Specif-
ically: (a) τmax from Figure 2 (τ as a function of parameter
b) with a = 10−2, c = 10−2; (b) τmax from Figure 3 with
a = 2.0 (circles) and a = 20 (squares), b = 10−2. The fixed
starting position x0 and the potential parameters p and q are
the same of Figure 2.

Fig. 5. Probability density function of stock price returns for
the Heston model with a metastable state and correlated noise
sources (Eqs. (4)). The parameters of the Cox-Ingersoll-Ross
process of equations (4) are: a = 2, b = 0.01, c = 26. The cross
correlation coefficient is ρ = −0.3. The potential parameters
are the same of Figure 2.

of Figure 2, and in Figure 4b those related to Figure 3.
The increase of stability is evident in panel (b) as τmax

increases with ρ.
It is interesting to show the probability density func-

tion (PDF) of stock price returns for the model described
by equations (4). This is done in Figure 5. As one can see
the qualitative behavior of a fat tail distribution, typical
of real financial market data, is recovered [9,10], but with
a peculiar asymmetry. To characterize quantitatively the
PDF of returns (Fig. 5) as regards the width, the asym-
metry and the fatness of the distribution, we calculate
the mean value 〈∆x〉, the variance σ∆x, the skewness κ3

and the kurtosis κ4. We obtained the following values:
〈∆x〉 = −0.434, σ∆x = 0.903, κ3 = −2.086, κ4 = 9.417.
These statistical quantities clearly show the asymmetry
of the distribution and its leptokurtic nature observed in
empirical investigations, characterized by a narrow and
larger maximum, and by fatter tails than in the Gaussian
distribution [9,10].

The presence of the asymmetry is very interesting and
it will be subject of future investigations. It is worthwhile
to note, however, that the PDF of returns become asym-
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Fig. 6. Comparison between the probability density function
of escape times of the price returns for the modified Heston
model with a metastable state (Eqs. (4)) (solid line) and the
PDF of escape times of returns for real market data (circles).
The parameter values of the model (4) are: p = 2, q = 3,
a = 20, b = 10−2, and c = 2.4. The cross correlation coefficient
between the noise sources is: ρ = −0.9.

metric in crash and rally days [33,34], that are just the
time periods of financial data where the related dynami-
cal regimes could be described by the models (2) and (4).
Of course the quantitative agreement between the PDF
of real data and that obtained from these models requires
further investigations on the parameter value choice of
the cubic potential, the parameters of the simple Heston
model and the correlation coefficient. This analysis is out-
side the aim of the present work and will be further inves-
tigated in a forthcoming paper.

Finally in the following Figure 6 we report the compar-
ison between the probability density function of the escape
times of daily price returns from real market data and that
obtained from the model described by equations (4). The
data set used here consists of daily closure prices for 1071
stocks traded at the NYSE and continuously present in
the 12-year period 1987–1998 (3030 trading days). The
same data were used in previous investigations by one of
the authors [20,35,36]. From this data set we obtained
the time series of the returns and we calculated the time
to hit a fixed threshold starting from a fixed initial po-
sition. The two thresholds were chosen as a fraction of
the standard deviation σn observed for each stock during
the above mentioned whole time period (n is the stock
index, varying between 1 and 1071). Specifically we chose:
(∆xi)n = −0.1σn and (∆xf )n = −1.0σn. The parame-
ters of the CIR process are: a = 20, b = 0.01, c = 2.4.
The cross correlation coefficient is ρ = −0.9, and the po-
tential parameters are the same of Figure 2. As one can
see the agreement between real and theoretical data is
very good, except at small escape times. The choice of
this parameter data set is not based on a fitting proce-
dure as that used for example in reference [21], where the
minimization of the mean square deviation between the
PDF of the returns extracted from financial data and that
obtained theoretically is done. We chose the parameter
set in the range in which we observe the nonmonotonic
behaviour of the mean escape time as a function of the
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parameters b and c (see Fig. 3b). Then by a trial and er-
ror procedure we selected the values of the parameters a,
b, and c for which we obtain the best fitting between the
PDF of escape times of the price returns calculated from
the modified Heston model (Eqs. (4)) and that obtained
from time series of real market data. Of course a better
quantitative procedure could be done, by considering also
the potential parameters. This will be done, together with
a detailed analysis of PDF of returns and its asymmetry,
in a forthcoming paper.

4 Conclusions

We have investigated the statistical properties of the es-
cape time in a generalized Heston market model, charac-
terized by the presence of a metastable state in the ef-
fective potential of the logarithm of the price p(t). We
observe the NES effect in the system investigated. The
presence of correlation between the stochastic volatility
and the noise source which affects directly the dynamics
of the quantity x(t) = ln p(t) (as in usual market models),
can influence the stability of the market. Specifically a
positive correlation between x(t) and volatility v(t) slows
down the walker escape process, that is it delays the crash
phenomenon by increasing the stability of the market. A
negative correlation on the contrary accelerates the escape
process, lowering the stability of the system.

This work was partially supported by MIUR.
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