6,809 research outputs found
Space station integrated propulsion and fluid systems study
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems
Mars Spacecraft Power System Development Final Report
Development of optimum Mariner spacecraft power system for application to future flyby and orbiter mission
ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids
We introduce an unsupervised feature learning approach that embeds 3D shape
information into a single-view image representation. The main idea is a
self-supervised training objective that, given only a single 2D image, requires
all unseen views of the object to be predictable from learned features. We
implement this idea as an encoder-decoder convolutional neural network. The
network maps an input image of an unknown category and unknown viewpoint to a
latent space, from which a deconvolutional decoder can best "lift" the image to
its complete viewgrid showing the object from all viewing angles. Our
class-agnostic training procedure encourages the representation to capture
fundamental shape primitives and semantic regularities in a data-driven
manner---without manual semantic labels. Our results on two widely-used shape
datasets show 1) our approach successfully learns to perform "mental rotation"
even for objects unseen during training, and 2) the learned latent space is a
powerful representation for object recognition, outperforming several existing
unsupervised feature learning methods.Comment: To appear at ECCV 201
Space suit
A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space
On the Non-invasive Measurement of the Intrinsic Quantum Hall Effect
With a model calculation, we demonstrate that a non-invasive measurement of
intrinsic quantum Hall effect defined by the local chemical potential in a
ballistic quantum wire can be achieved with the aid of a pair of voltage leads
which are separated by potential barriers from the wire. B\"uttiker's formula
is used to determine the chemical potential being measured and is shown to
reduce exactly to the local chemical potential in the limit of strong potential
confinement in the voltage leads. Conditions for quantisation of Hall
resistance and measuring local chemical potential are given.Comment: 16 pages LaTex, 2 post-script figures available on reques
Dynamic Spin Response for Heisenberg Ladders
We employ the recently proposed plaquette basis to investigate static and
dynamic properties of isotropic 2-leg Heisenberg spin ladders. Simple
non-interacting multi-plaquette states provide a remarkably accurate picture of
the energy/site and dynamic spin response of these systems. Insights afforded
by this simple picture suggest a very efficient truncation scheme for more
precise calculations. When the small truncation errors are accounted for using
recently developed Contractor Renormalization techniques, very accurate results
requiring a small fraction of the computational effort of exact calculations
are obtained. These methods allow us to determine the energy/site, gap, and
spin response of 2x16 ladders. The former two values are in good agreement with
density matrix renormalization group results. The spin response calculations
show that nearly all the strength is concentrated in the lowest triplet level
and that coherent many-body effects enhance the response/site by nearly a
factor of 1.6 over that found for 2x2 systems.Comment: 9 pages with two enclosed postscript figure
Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments
Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These
are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or
simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of
cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral
experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was
used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object
were integrated together either symmetrically or asymmetrically. The former only allowed the common
component of participants' actions to take place, but the latter used the mean. Symmetric action integration was
superior for sections of the task when both participants had to perform similar actions, but if participants had to
move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled
down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to
which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the
reduction in performance caused by having to cooperate with another person)
Rational foundation of GR in terms of statistical mechanic in the AdS/CFT framework
In this article, we work out the microscopic statistical foundation of the
supergravity description of the simplest 1/2 BPS sector in the AdS(5)/CFT(4).
Then, all the corresponding supergravity observables are related to
thermodynamical observables, and General Relativity is understood as a
mean-field theory. In particular, and as an example, the Superstar is studied
and its thermodynamical properties clarified.Comment: 13 pages, 6 eps figures, latex, some improvements introduced,
reference added, typos correcte
M-theory Supertubes with Three and Four Charges
Using the covariant M5-brane action, we construct configurations
corresponding to supertubes with three and four charges. We derive the BPS
equations and study the full structure of the solutions. In particular, we find
new solutions involving arbitrariness in field strengths.Comment: 24 pages, references added and typos correcte
Measuring Relations Between Concepts In Conceptual Spaces
The highly influential framework of conceptual spaces provides a geometric
way of representing knowledge. Instances are represented by points in a
high-dimensional space and concepts are represented by regions in this space.
Our recent mathematical formalization of this framework is capable of
representing correlations between different domains in a geometric way. In this
paper, we extend our formalization by providing quantitative mathematical
definitions for the notions of concept size, subsethood, implication,
similarity, and betweenness. This considerably increases the representational
power of our formalization by introducing measurable ways of describing
relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final
publication is available at Springer via
https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial
text overlap with arXiv:1707.05165, arXiv:1706.0636
- …