3,710 research outputs found

    Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    Get PDF
    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could offer automated, continuous monitoring of cell cultures with a temporal resolution of 1 minute, which is not attainable by sampling via handheld blood analyzer (i-STAT). Conclusion: The resulting bias and precision found in these cell culture-based studies is comparable to Paratrend sensor clinical results. Although the large error in p02 measurements (+/-18 mm Hg) may be acceptable for clinical applications, where Paratrend values are periodically adjusted to a BGA measurement, the O2 sensor in this bundle may not be reliable enough for the single-calibration requirement of sensors used in NASA's bioreactors. The pH and pC02 sensors in the bundle are reliable and stable over the measurement period, and can be used without recalibration to measure cell cultures in rn.jcrogravity biotechnology experiments. Future work will test additional Paratrend sensors to provide statistical assessment of sensor performance

    The History and Conservation of Saltpeter Works in Mammoth Cave, Kentucky

    Get PDF
    Remains of the saltpeter mining operation in Mammoth Cave are a significant feature of several cave tours and figure prominently in the history of cave use. We undertook a comprehensive review of existing historical descriptions and recent archaeological investigations to construct the most reasonable account of how the saltpeter operation worked and assess its current conditions. At least three types of saltpeter vats were constructed in the cave reflecting an increase in the size of the operation and efficiency of processing sediments over time. Remains of three pump towers are also found in the cave in various states of preservation. The water pipe system was mostly dismantled, but archaeological evidence indicates its most probable route through the cave. We recommend more thorough documentation of existing remains, conservation efforts to preserve existing remains, better interpretative signage, and possibly repair or replication of damaged or missing components to further enhance public interpretation

    Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout

    Full text link
    We have detected coherent quantum oscillations between Josephson phase qubits and microscopic critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. The period of the oscillations is consistent with the spectroscopic splittings observed in the qubit's resonant frequency. The results point to a possible mechanism for decoherence and reduced measurement fidelity in superconducting qubits and demonstrate the means to measure two-qubit interactions in the time domain
    corecore